問題文全文(内容文):
Pは奇数の素数である.
$N=(P+1)(P+3)(P+5)$
(1)Nは48の倍数であることを示せ.
(2)Nが144の倍数となるPを小さい順に5つ答えよ.
千葉大過去問
Pは奇数の素数である.
$N=(P+1)(P+3)(P+5)$
(1)Nは48の倍数であることを示せ.
(2)Nが144の倍数となるPを小さい順に5つ答えよ.
千葉大過去問
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
Pは奇数の素数である.
$N=(P+1)(P+3)(P+5)$
(1)Nは48の倍数であることを示せ.
(2)Nが144の倍数となるPを小さい順に5つ答えよ.
千葉大過去問
Pは奇数の素数である.
$N=(P+1)(P+3)(P+5)$
(1)Nは48の倍数であることを示せ.
(2)Nが144の倍数となるPを小さい順に5つ答えよ.
千葉大過去問
投稿日:2023.04.25