確率漸化式 特性方程式 - 質問解決D.B.(データベース)

確率漸化式 特性方程式

問題文全文(内容文):
(1)正三角形ABCの頂点を1秒ごとに無作為に必ず隣の頂点に移動する虫がいる。虫がはじめ頂点Aにいる時、n秒後に頂点Aにいる確率を求めよ。
(2)2,3,5,7,9の数字が書かれたカードが各1枚入った箱がある。箱から無作為に1枚取り出し数字をメモしてカードは箱に戻す。これをn回繰り返したときにメモされた数字の合計が奇数である確率を求めよ。
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)正三角形ABCの頂点を1秒ごとに無作為に必ず隣の頂点に移動する虫がいる。虫がはじめ頂点Aにいる時、n秒後に頂点Aにいる確率を求めよ。
(2)2,3,5,7,9の数字が書かれたカードが各1枚入った箱がある。箱から無作為に1枚取り出し数字をメモしてカードは箱に戻す。これをn回繰り返したときにメモされた数字の合計が奇数である確率を求めよ。
投稿日:2018.02.15

<関連動画>

福田の数学〜慶應義塾大学2024年理工学部第1問(2)〜漸化式とはさみうちの原理

アイキャッチ画像
単元: #大学入試過去問(数学)#漸化式#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
関数f(x)は実数全体で定義されており、$x\leqq 2$において
$\dfrac{2}{3}-\dfrac{1}{3}x\leqq f(x)\leqq 2-x$
を満たしているものとする。数列{$a_{ n }$}は漸化式
$a_{ n+1 }=a_{ n }+f(a_{ n })$
を満たしているものとする。
(i)$a_{ 1 } \leqq 2$ならば、すべての自然数nに対して、$a_{ 1 } \leqq a_{ n }\leqq2$となる事を証明しなさい。
(ii)$a_{ 1 } \leqq 2$ならば、$a_{ 1 }$の値によらず$\displaystyle \lim_{ n \to \infty } a_n = 2$となる事を証明しなさい。
この動画を見る 

【高校数学】等比数列の一般項の例題演習~公式を使いこなそう~ 3-5.5【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
次の等比数列の一般項を求めよ。また、第8項を求めよ。
 (a)-2,2,-2,2,…
 (b)1,-3,9,-27,…

2⃣
第4項が-24、第6項が-96である、等比数列${a_{n}}$の一般項を求めよ。
この動画を見る 

茨城大 漸化式ぐらい自由に解かせてくれ

アイキャッチ画像
単元: #数列#学校別大学入試過去問解説(数学)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023茨城大学過去問題
一般項$a_{n}$を求めよ
$3a_{n}=S_{n}+n^2-2n+1$
$S_n=\displaystyle\sum_{k=1}^{n}a_{k}$
この動画を見る 

【よく出る応用問題!】f(n)の絡む漸化式を5分で解説!〔数学、高校数学〕

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 3rd School
問題文全文(内容文):
f(n)の絡む漸化式について解説します。
以下の漸化式で表される数列の一般項を求めよ。
$a_{n+1}=2a_n+3n-3$ $a_1=1$
この動画を見る 

福田の数学〜神戸大学2023年理系第1問〜漸化式の解法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 関数$f(x)$を
$f(x)$=$\left\{\begin{array} \\
\frac{1}{2}x+\frac{1}{2} (x≦ 1)\\
2x-1 (x \gt 1)\\
\end{array}\right.$
で定める。aを実数とし、数列$\left\{a_n\right\}$を
$a_1$=a, $a_{n+1}$=$f(a_n)$ (n=1,2,3,...)
で定める。以下の問いに答えよ。
(1)すべての実数xについて$f(x)$≧x が成り立つことを示せ。
(2)a≦1のとき、すべての正の整数nについて$a_n$≦1が成り立つことを示せ。
(3)数列$\left\{a_n\right\}$の一般項をnとaを用いて表せ。

2023神戸大学理系過去問
この動画を見る 
PAGE TOP