福田の入試問題解説アプリの紹介 - 質問解決D.B.(データベース)

福田の入試問題解説アプリの紹介

問題文全文(内容文):
入試問題解説アプリの紹介動画です
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
入試問題解説アプリの紹介動画です
投稿日:2019.02.13

<関連動画>

福田の数学〜中央大学2022年経済学部第2問〜ベクトルの内積と三角形の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\triangle ABC$において、ベクトルの内積が
$\overrightarrow{ CA }・\overrightarrow{ AB }=-2,\ \ \overrightarrow{ AB }・\overrightarrow{ BC }=-4,\ \ \ \overrightarrow{ BC }・\overrightarrow{ CA }=-5$
であるとき、以下の設問に答えよ。
(1)3辺AB,BC,CAの長さを求めよ。
(2)\triangle ABCの面積を求めよ。

2022中央大学経済学部過去問
この動画を見る 

慶應義塾 三次方程式 解と係数の関係 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題
$x^3-2x^2+3x-4=0$の3つの解をα,β,γとしたとき、次の式の値
(1)$α^4+β^4+γ^4$
(2)$α^5+β^5+γ^5$
この動画を見る 

福田の数学〜千葉大学2022年理系第7問〜不定方程式の自然数解と漸化式で与えられた数列

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$x,y$についての方程式
$x^2-6xy+y^2=9  \ldots\ldots(*)$
に関する次の問いに答えよ。
(1)$x,y$がともに正の整数であるような(*)の解のうち、yが最小であるものを
求めよ。
(2)数列$a_1,a_2,a_3,\ldots$が漸化式
$a_{n+2}-6a_{n+1}+a_n=0  (n=1,2,3,\ldots)$
を満たすとする。このとき、$(x,y)=(a_{n+1},a_n)$が(*)を満たすならば、
$(x,y)=(a_{n+2},a_{n+1})$も(*)を満たすことを示せ。
(3)(*)の整数解(x,y)は無数に存在することを示せ。

2022千葉大学理系過去問
この動画を見る 

福田の数学〜名古屋大学2025理系第1問〜関数の増減と最大

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(1)実数$x$を変数とする関数$f(x)$が導関数$f'(x)$および

第$2$次導関数$f''(x)$をもち、

すべての$x$に対し$f''(x)\gt 0$をみたすとする。

さらに以下の極限値$a,b(a\lt b)$が存在すると仮定する。

$\displaystyle \lim_{x\to -\infty} f'(x)=a,\displaystyle \lim_{x\to\infty}f'(x)=b$

このとき、

$a\lt c \lt b$をみたす任意の実数$c$に対し、

関数$g(x)=cx-f(x)$の値を最大にする

$x=x_0$がただひとつ存在することを示せ。

(2)実数$x$を変数とする関数

$f(x)=\log \left(\dfrac{e^x+e^{-x}}{2}\right)$

はすべての$x$に対し$f''(x)\gt 0$をみたすことを示せ。

また、この$f$に対し小問(1)の極限値$a,b$を求めよ。

(3)小問(2)の関数$f$および極限値$a,b$を考える。

$a \lt c \lt b$をみたす任意の実数$c$に対し

小問(1)の$x_0$および$g(x_0)$を$c$で表せ。

$2025$年名古屋大学理系過去問題
この動画を見る 

大学入試問題#429「誘導があってもよいような・・・」 小樽商科大学 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#小樽商科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} (1-x^2)^{\frac{5}{2}} dx$

出典:小樽商科大学
この動画を見る 
PAGE TOP