早稲田(政経) 整数問題 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

早稲田(政経) 整数問題 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
2014早稲田大学過去問題
x,yは自然数、Pは3以上の素数
(1)$x^2-y^2 = P$が成り立つとき、x,yをPで表せ(答えのみ)
(2)$x^3-y^3 = P$が成り立つとき、Pを6で割った余りは1であることを証明せよ。
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2014早稲田大学過去問題
x,yは自然数、Pは3以上の素数
(1)$x^2-y^2 = P$が成り立つとき、x,yをPで表せ(答えのみ)
(2)$x^3-y^3 = P$が成り立つとき、Pを6で割った余りは1であることを証明せよ。
投稿日:2018.05.07

<関連動画>

スッキリだそう

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a+b+c=1$
$a^2+b^2+c^2=2$
$a^3+b^3+c^3=3$
$a^4+b^4+c^4=\Box$
$a^5*b^5+c^5=\Box$
$\Box$を求めよ.
この動画を見る 

【高校数学】数Ⅰ-5 展開②(練習編)

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$(x+4y)(3x-2y)$
②$(-3x-y)(y-3x)$
③$(3m-a)(2m-5a)$
④$(3a-\displaystyle \frac{1}{2}b)^2$
⑤$(a+2b)^2(a-2b)^2$
⑥$(x-2)(x+2)(x^2+4)$
⑦$(x+y)^2(x-y)^2(x^2+y^2)^2$
⑧$(2a+b)(4a^2+b^2)(2a-b)$
この動画を見る 

一工夫必要なBBB

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\dfrac{1}{1!3}+\dfrac{1}{2!4}+\dfrac{1}{3!5}+・・・+\dfrac{1}{2021!2023}$
この動画を見る 

福田の入試問題解説〜東京大学2022年理系第3問〜点の存在する条件と領域の面積

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ Oを原点とする座標平面上で考える。座標平面上の2点S(x_1,y_1),T(x_2,y_2)\\
に対し、点Sが点Tから十分離れているとは、\\
|x_1-x_2| \geqq 1 または |y_1-y_2| \geqq 1\\
が成り立つことと定義する。\\
不等式\\
0 \leqq x \leqq 3, 0 \leqq y \leqq 3\\
が表す正方形の領域をDとし、その2つの頂点A(3,0), B(3,3)を考える。\\
さらに、次の条件(\textrm{i}),(\textrm{ii})を共に満たす点Pをとる。\\
(\textrm{i})点Pは領域Dの点であり、かつ、放物線y=x^2上にある。\\
(\textrm{ii})点Pは、3点O,A,Bのいずれからも十分離れている。\\
点Pのx座標をaとする。\\
(1)aのとりうる値の範囲を求めよ。\\
(2)次の条件(\textrm{iii}),(\textrm{iv})をともに満たす点Qが存在しうる範囲の面積f(a)を求めよ。\\
(\textrm{iii})点Qは領域Dの点である。\\
(\textrm{iv})点Qは、4点O,A,B,Pのいずれからも十分離れている。\\
(3)aは(1)で求めた範囲を動くとする。(2)のf(a)を最小にするaの値を求めよ。
\end{eqnarray}

2022東京大学理系過去問
この動画を見る 

ルートを外せ15

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{\frac{n^2+297}{n^2+1}}$が整数となる整数nをすべて求めよ

2022中央大学附属高等学校
この動画を見る 
PAGE TOP