【高校数学】ユークリッドの互除法の例題2題 5-7.5【数学A】 - 質問解決D.B.(データベース)

【高校数学】ユークリッドの互除法の例題2題 5-7.5【数学A】

問題文全文(内容文):
1⃣
390と273の最大公約数を求めよ

2⃣
31$x$+22$y$=3を満たす整数$x、y$の組を1つ求めよ
チャプター:

00:00 はじまり

00:18 問題だよ

00:45 問題解説(1)

02:08 問題解説(2)

05:45 まとめ

06:07 問題と答え

単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
390と273の最大公約数を求めよ

2⃣
31$x$+22$y$=3を満たす整数$x、y$の組を1つ求めよ
投稿日:2021.04.21

<関連動画>

福田の1.5倍速演習〜合格する重要問題046〜一橋大学2017年度文系第3問〜次数のわからない整式の決定問題

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#整数の性質#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
P(0)=1, P(x+1)-P(x)=2xを満たす整式P(x)を求めよ。

2017一橋大学文系過去問
この動画を見る 

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IIB第1問〜三角関数、指数対数関数、図形と方程式

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と方程式#三角関数#指数関数と対数関数#指数関数#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第1問}$
[1](1)$0 \leqq \theta \lt 2\pi$のとき
$\sin\theta \gt \sqrt3\cos\left(\theta-\displaystyle \frac{\pi}{3}\right)$ $\cdots$①
となる$\theta$の値の範囲を求めよう。
加法定理を用いると

$\sqrt3\cos\left(\theta-\frac{\pi}{3}\right)=$$\displaystyle\frac{\sqrt{\boxed{\ \ ア\ \ }}}{\boxed{\ \ イ\ \ }}\cos\theta+\displaystyle\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ イ\ \ }}\sin\theta$

である。よって、三角関数の合成を用いると、①は

$\sin\left(\theta+\displaystyle\frac{\pi}{\boxed{\ \ エ\ \ }}\right) \lt 0$

と変形できる。したがって、求める範囲は

$\displaystyle\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}\pi \lt \theta \lt \frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\pi$

である。

(2)$0 \leqq \theta \leqq \displaystyle\frac{\pi}{2}$とし、$k$を実数とする。$\sin\theta$と$\cos\theta$は$x$の2次方程式
$25x^2-35x+k=0$の解であるとする。このとき、解と係数の関係に
より$\sin\theta+\cos\theta$と$\sin\theta\cos\theta$の値を考えれば、$k=\boxed{\ \ ケコ\ \ }$で
あることがわかる。

さらに、$\theta$が$\sin\theta \geqq \cos\theta$を満たすとすると、$\sin\theta=\displaystyle\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }},$
$\cos\theta=\displaystyle\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}$である。このとき、$\theta$は$\boxed{\ \ ソ\ \ }$を満たす。
$\boxed{\ \ ソ\ \ }$に当てはまるものを、次の⓪~⑤のうちから一つ選べ。
⓪$0 \leqq \theta \lt \displaystyle\frac{\pi}{12}$

①$\displaystyle\frac{\pi}{12} \leqq \theta \lt \displaystyle\frac{\pi}{6}$

②$\displaystyle\frac{\pi}{6} \leqq \theta \lt \displaystyle\frac{\pi}{4}$

③$\displaystyle\frac{\pi}{4} \leqq \theta \lt \displaystyle\frac{\pi}{3}$

④$\displaystyle\frac{\pi}{3} \leqq \theta \lt \displaystyle\frac{5}{12}\pi$

⑤$\displaystyle\frac{5}{12}\pi \leqq \theta \leqq \displaystyle\frac{\pi}{2}$


[2](1)$t$は正の実数であり、$t^{\displaystyle\frac{1}{3}}-t^{-\displaystyle\frac{1}{3}}=-3$を満たすとする。このとき

$t^{\displaystyle\frac{2}{3}}+t^{-\displaystyle\frac{2}{3}}=\boxed{\ \ タチ\ \ }$

である。さらに

$t^{\frac{1}{2}}+t^{-\frac{1}{2}}=\sqrt{\boxed{\ \ ツテ\ \ }}, $$t-t^{-1}=\boxed{\ \ トナニ\ \ }$

である。

(2)$x,y$は正の実数とする。連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
\log_3(x\sqrt y) \leqq 5 \cdots②\\
\log_{81}\frac{y}{x^3} \leqq 1 \cdots③
\end{array}
\right.
\end{eqnarray}$

について考える。
$X=\log_3x,$ $Y=\log_3y$とおくと、②は
$\boxed{\ \ ヌ\ \ }\ X+Y \leqq \boxed{\ \ ネノ\ \ }$ $\cdots$④
と変形でき、③は
$\boxed{\ \ ハ\ \ }\ X-Y \geqq \boxed{\ \ ヒフ\ \ }$ $\cdots$⑤
と変形できる。
$X,Y$が④と⑤を満たすとき、$Y$の取り得る最大の整数の値は
$\boxed{\ \ ヘ\ \ }$である。また、$x,y$が②,③と$\log_3y=\boxed{\ \ ヘ\ \ }$を同時に
満たすとき、xの取り得る最大の整数の値は$\boxed{\ \ ホ\ \ }$である。

2020センター試験過去問
この動画を見る 

早稲田大 ガウス記号

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x$は実数であり,$n$は自然数である.
①$\left[\dfrac{1}{2}x\right]-\left[\dfrac{1}{2}[x]\right]=0$示せ.
②$\left[\dfrac{1}{n}x\right]-\left[\dfrac{1}{n}[x]\right]=0$を求めよ.

2009早稲田大過去問
この動画を見る 

真面目な方程式 解は2つ

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$x^x=\left(\dfrac{4}{9}\right)^{\frac{4}{9}}$
この動画を見る 

気付くか、気付かないか 2021 埼玉県  B

アイキャッチ画像
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
BE=?
*図は動画内参照

2021埼玉県
この動画を見る 
PAGE TOP