福田の一夜漬け数学〜図形と方程式〜軌跡(4)2直線の交点の軌跡、高校2年生 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜図形と方程式〜軌跡(4)2直線の交点の軌跡、高校2年生

問題文全文(内容文):
${\Large\boxed{1}}$ 2直線$y+k(x-2)=0$ $\cdots$①,$ky-(x+2)=0$ $\cdots$② について
(1)$k$が全ての実数値を取るとき、①②の交点の軌跡を求めよ。
(2)$0 \lt k \lt 1$の範囲をkが動くとき、①②の交点の軌跡を求めよ。
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 2直線$y+k(x-2)=0$ $\cdots$①,$ky-(x+2)=0$ $\cdots$② について
(1)$k$が全ての実数値を取るとき、①②の交点の軌跡を求めよ。
(2)$0 \lt k \lt 1$の範囲をkが動くとき、①②の交点の軌跡を求めよ。
投稿日:2018.08.19

<関連動画>

福田のわかった数学〜高校2年生052〜領域(7)領域と最大最小(3)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#円と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 領域(7) 領域と最大最小(3)\\
x^2+y^2 \leqq 10, y \geqq 0 のとき、\\
2x-y\\
の最大値と最小値を求めよ。
\end{eqnarray}
この動画を見る 

【数学】中高一貫校用問題集:図形と式:軌跡と方程式:2直線の交点の軌跡(直交する場合)

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#図形と計量#図形と方程式#数学(高校生)
教材: #中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
mが実数全体を取って動くとき、$x+my-1=0,mx-y+2m=0$の交点Pの軌跡を求めよ
この動画を見る 

【短時間でポイントチェック!!】定積分の基礎〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$\int_{-1}^2(x^2-6x+1)dx$
この動画を見る 

福田の数学〜上智大学2023年TEAP利用型理系第4問Part2〜不等式の証明と近似値計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#積分とその応用#定積分#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{4}}$ $e$を自然対数の底とする。$e$=2.718...である。
(1)0≦$x$≦1において不等式1+$x$≦$e^x$≦1+2$x$が成り立つことを示せ。
(2)$n$を自然数とするとき、0≦$x$≦1において不等式
$\displaystyle\sum_{k=0}^n\frac{x^k}{k!}$≦$e^x$≦$\displaystyle\sum_{k=0}^n\frac{x^k}{k!}+\frac{x^n}{n!}$
が成り立つことを示せ。
(3)0≦$x$≦1を定義域とする関数$f(x)$を
$f(x)$=$\left\{\begin{array}{1}
1 (x=0)\\
\displaystyle\frac{e^x-1}{x} (0<x≦1)
\end{array}\right.$
と定義する。(2)の不等式を利用して、定積分$\displaystyle\int_0^1f(x)dx$ の近似値を小数第3位まで求め、求めた近似値と真の値との誤差が$10^{-3}$以下である理由を説明せよ。
この動画を見る 

横浜市立大(医)3次方程式の虚数解の絶対値

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#複素数と方程式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3-x^2-x+k=0(k\gt 1)$である.

(1)実数解は1個であることを示せ.
(2)3つの解の絶対値はいずれも1より大きいことを示せ.

横浜市立(医)過去問
この動画を見る 
PAGE TOP