問題文全文(内容文):
${\Large\boxed{1}}$ 次の媒介変数表示で表された点$P(x,y)$の軌跡を求めよ。
(1)$x=\displaystyle \frac{\cos\theta+\sin\theta}{\sqrt2},$ $y=\displaystyle \frac{\cos\theta-\sin\theta}{\sqrt2}$ ($\theta$は任意の実数)
(2)$x=\displaystyle \frac{1-t^2}{1+t^2},$ $y=\displaystyle \frac{2t}{1+t^2}$ ($t$は任意の実数)
${\Large\boxed{1}}$ 次の媒介変数表示で表された点$P(x,y)$の軌跡を求めよ。
(1)$x=\displaystyle \frac{\cos\theta+\sin\theta}{\sqrt2},$ $y=\displaystyle \frac{\cos\theta-\sin\theta}{\sqrt2}$ ($\theta$は任意の実数)
(2)$x=\displaystyle \frac{1-t^2}{1+t^2},$ $y=\displaystyle \frac{2t}{1+t^2}$ ($t$は任意の実数)
単元:
#数Ⅱ#平面上の曲線#図形と方程式#軌跡と領域#媒介変数表示と極座標#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 次の媒介変数表示で表された点$P(x,y)$の軌跡を求めよ。
(1)$x=\displaystyle \frac{\cos\theta+\sin\theta}{\sqrt2},$ $y=\displaystyle \frac{\cos\theta-\sin\theta}{\sqrt2}$ ($\theta$は任意の実数)
(2)$x=\displaystyle \frac{1-t^2}{1+t^2},$ $y=\displaystyle \frac{2t}{1+t^2}$ ($t$は任意の実数)
${\Large\boxed{1}}$ 次の媒介変数表示で表された点$P(x,y)$の軌跡を求めよ。
(1)$x=\displaystyle \frac{\cos\theta+\sin\theta}{\sqrt2},$ $y=\displaystyle \frac{\cos\theta-\sin\theta}{\sqrt2}$ ($\theta$は任意の実数)
(2)$x=\displaystyle \frac{1-t^2}{1+t^2},$ $y=\displaystyle \frac{2t}{1+t^2}$ ($t$は任意の実数)
投稿日:2018.08.17