福田の一夜漬け数学〜図形と方程式〜円の方程式(2)三角形の外心、高校2年生 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜図形と方程式〜円の方程式(2)三角形の外心、高校2年生

問題文全文(内容文):
${\Large\boxed{1}}$ 3点$A(-2,6),B(1,-3),C(5,-1)$を頂点とする$\triangle ABC$の外心の座標を求めよ。
単元: #数A#数Ⅱ#図形の性質#内心・外心・重心とチェバ・メネラウス#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 3点$A(-2,6),B(1,-3),C(5,-1)$を頂点とする$\triangle ABC$の外心の座標を求めよ。
投稿日:2018.07.27

<関連動画>

【不定方程式の特解はこれで楽勝】合同式を使った不定方程式の解き方を解説!〔数学 高校数学〕

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
合同式を使った不定方程式の解き方について解説します。
この動画を見る 

合同式 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$自然数
$a_n=2^n+3^n+1$

(1)
$n$が6の倍数のとき、$a_n$は7の倍数でないことを示せ

(2)
$a_n$が7の倍数になる条件は?
この動画を見る 

【糸口を探せ!】整数:同志社国際高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\sqrt{24n}$と$\sqrt{n+27}$がともに整数になるような最小の自然数$n$の値を求めよ.

同志社国際高校過去問
この動画を見る 

ルートと整数 大阪星光学院

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$n^2-2n-1 < \sqrt{50} <n^2-2n+1 $
を満たす整数nをすべて求めよ。

大阪星光学院高等学校
この動画を見る 

答えは出るでしょう。。。

アイキャッチ画像
単元: #数学(中学生)#中3数学#数A#図形の性質#三平方の定理#方べきの定理と2つの円の関係#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$c^2$をa,bで表せ
*図は動画内参照
この動画を見る 
PAGE TOP