ベトナム数学オリンピック - 質問解決D.B.(データベース)

ベトナム数学オリンピック

問題文全文(内容文):
$ a+b+c=2022$
$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2022}$
$\dfrac{1}{a^{2023}}+\dfrac{1}{b^{2023}}+\dfrac{1}{c^{2023}}=?$
これを解け.

ベトナム数学オリンピック過去問
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a+b+c=2022$
$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2022}$
$\dfrac{1}{a^{2023}}+\dfrac{1}{b^{2023}}+\dfrac{1}{c^{2023}}=?$
これを解け.

ベトナム数学オリンピック過去問
投稿日:2022.08.04

<関連動画>

福田の1.5倍速演習〜合格する重要問題056〜神戸大学2017年度文系第1問〜3次関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ tを正の実数とする。$f(x)=x^3+3x^2-3(t^2-1)x+2t^3-3t^2+1$とおく。
以下の問いに答えよ。
(1)2t^3-3t^2+1 を因数分解せよ。
(2)$f(x)$が極小値0をもつことを示せ。
(3)$-1 \leqq x \leqq 2$における$f(x)$の最小値$m$と最大値$M$をtの式で表せ。

2017神戸大学文系過去問
この動画を見る 

#44 数検1級1次 過去問 3乗根

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\sqrt[ 3 ]{ 10+6\sqrt{ 3 } }$を$a+b\sqrt{ 3 }$で表せ。
ただし$a,b$は有理数とする。
この動画を見る 

【数Ⅱ】指数関数・対数関数:大小比較① 次の各組の数の大小を不等号を用いて表せ。(1)2の1/2乗, 4の1/4乗, 8の1/8乗

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の各組の数の大小を不等号を用いて表せ。
(1)$2$の$\dfrac{1}{2}$乗,$4$の$\dfrac{1}{4}$乗,$8$の$\dfrac{1}{8}$乗
この動画を見る 

05大阪府教員採用試験(数学:2番 指数対数)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#対数関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
2⃣ $x,y,z \in \mathbb{R}$
$2^x=3^y=Z$
$\frac{1}{x}+\frac{1}{y}=\frac{1}{2}$のときZの値を求めよ。
この動画を見る 

大学入試じゃないよ 高校入試だよ  3通りで解説 成城学園

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#指数関数と対数関数#指数関数#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2^{56}と5^{24}$はどっちが大きい?


成城学園高等学校
この動画を見る 
PAGE TOP