【中学数学】この形の問題の裏技集~外角の二等分線~ 4-6.5【中2数学】 - 質問解決D.B.(データベース)

【中学数学】この形の問題の裏技集~外角の二等分線~ 4-6.5【中2数学】

問題文全文(内容文):
【中2数学】外角の二等分線説明動画です
チャプター:

00:00 はじまり

00:24 裏技はじまり

03:54 証明

06:30 他の例題

07:51 まとめ

08:29 まとめノート

単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
【中2数学】外角の二等分線説明動画です
投稿日:2021.12.04

<関連動画>

【高校受験対策/数学】死守70

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・数学 死守70

①$x^2-36y^2$

➁$(x+3)(x-4)-8$

③$(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})$

④$x(x-6)=-4(x-2)$

⑤$3x^2-5x+1=0$

⑥$3a+b=10$

⑦$-6+9÷\frac{1}{4}$

⑧$x^2+xy$

⑨$5xy^2×7xy÷(-x)^2$

➉$\frac{5x-3y}{3}-\frac{3x-7y}{4}$

⑪$3x+4y=x+y=2$

⑫$(2\sqrt{10}-5)(\sqrt{10}+4)$

⑬$x^2-6x-18$

⑭$(x-5)^2-7(x-5)+12$

⑮$0.2(x-2)=x+1.2$

⑯$\frac{x-2}{4}+\frac{2-5x}{6}=1$
この動画を見る 

ゆく年くる年連立方程式 ちょっと外積

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
2019x+2020y=66 \\
1009x+1011y=33
\end{array}
\right.
\end{eqnarray}$
これを解け.
この動画を見る 

中2数学「連立方程式と解」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~第11回連立方程式と解~

例題次のア~ウの中で、連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+2y=8 \\
5x-3y=7
\end{array}
\right.
\end{eqnarray}$
の解はどれか?

ア $x=4,y=-2$
イ $x=5,y=6$
ウ $x=2,y=1$
この動画を見る 

【数学】中2-15 連立方程式② 加減法の基本編

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
2つの文字で①____が揃っているほうが消えるように
(+)か(ー)を選ぼう!
◎加減法で解こう!!

$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y=2 \\
2x-y=7
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+y=-1 \\
3x+2y=1
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
4x+3y=13 \\
x+3y=1
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
5x+2y=4 \\
5x-2y=16
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察3(受験編)

アイキャッチ画像
単元: #中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#数と式#式と証明#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#恒等式・等式・不等式の証明#文字と式
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $\displaystyle \frac{a+b+c+d}{4} \geqq \sqrt[4]{abcd}$ を既知として、$\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$ を証明せよ。
ただし、a,b,c,dは全て正の数であるとする。

${\Large\boxed{2}}\ \boxed{1}$を利用して、n個の変数の相加・相乗平均の関係を証明せよ。
つまり、n個の正の数\ a_1,a_2,\cdot,a_nに対して
$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n} \geqq \sqrt[n]{a_1a_2\cdots a_n}$
この動画を見る 
PAGE TOP