慶應(医)空間 直線&平面の方程式 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

慶應(医)空間 直線&平面の方程式 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
慶応義塾大学過去問題
直線 $l:6-x=\frac{y+5}{2}=2-z$と
平面$α:z+y-z-1=0$
(1)lとαの交点の座標
(2)lを含み平面αに垂直な平面πの方程式
(3)lと、平面αとπの交線のなす角をθ(0°$\leqq$θ$\leqq$90°)
cosθの値
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#三角関数#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#慶應義塾大学#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題
直線 $l:6-x=\frac{y+5}{2}=2-z$と
平面$α:z+y-z-1=0$
(1)lとαの交点の座標
(2)lを含み平面αに垂直な平面πの方程式
(3)lと、平面αとπの交線のなす角をθ(0°$\leqq$θ$\leqq$90°)
cosθの値
投稿日:2018.05.18

<関連動画>

【受験算数】平面図形:海城過去問~正六角形と正三角形の面積を比べる

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
周の長さが6㎝の正六角形の面積は、周の長さが6㎝の正三角形の面積の何倍ですか。
この動画を見る 

福田の数学〜大阪大学2023年理系第2問〜ベクトルと領域

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#図形と方程式#軌跡と領域#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 平面上の3点O,A,Bが
|2$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|$\overrightarrow{OA}$+2$\overrightarrow{OB}$|=1 かつ (2$\overrightarrow{OA}$+$\overrightarrow{OB}$)・($\overrightarrow{OA}$+$\overrightarrow{OB}$)=$\displaystyle\frac{1}{3}$
を満たすとする。
(1)(2$\overrightarrow{OA}$+$\overrightarrow{OB}$)・($\overrightarrow{OA}$+2$\overrightarrow{OB}$)を求めよ。
(2)平面上の点Pが
|$\overrightarrow{OP}$ー($\overrightarrow{OA}$+$\overrightarrow{OB}$)|≦$\frac{1}{3}$ かつ $\overrightarrow{OP}$・(2$\overrightarrow{OA}$+$\overrightarrow{OB}$)≦$\frac{1}{3}$
を満たすように動くとき、|$\overrightarrow{OP}$|の最大値と最小値を求めよ。

2023大阪大学理系過去問
この動画を見る 

福田の数学〜立教大学2024年経済学部第3問〜ベクトルと平面幾何

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
三角形$\mathrm{OAB}$において、$\mathrm{OA}=5,\mathrm{OB}=7,\mathrm{AB}=8$とする。また、$\mathrm{O}$を中心とする半径$r$の円$C$が直線$\mathrm{AB}$上の点$\mathrm{D}$で接している。さらに、$\mathrm{A}$から$C$へ引いた接線と$C$との接点を$\mathrm{E}$とする。ただし、$\mathrm{E}$は$\mathrm{D}$と異なる点とする。$\overrightarrow{\mathrm{OA}}=\vec{a}, \overrightarrow{\mathrm{OB}}=\vec{b}$とおくとき、次の問いに答えよ。
(1) 内積$\vec{a}\cdot \vec{b}$を求めよ。
(2) $\overrightarrow{\mathrm{OD}}$を$\overrightarrow{\mathrm{OD}}=(1-t)\vec{a}+t\vec{b}$と表すとき、定数$t$の値を求めよ。
(3)$r$の値を求めよ。
(4) $\mathrm{D}$から$\mathrm{OA}$へ下した垂線を$\mathrm{DH}$とする。$\overrightarrow{\mathrm{DH}}$を$\vec{a}$を用いて表せ。
(5) $\mathrm{OE}$を$\mathrm{OE}=p\vec{a}+q\vec{b}$と表すとき、定数$p,q$の値を求めよ。
この動画を見る 

【数B】平面ベクトル:ベクトルの基本① 基本的な考え方「終わり-始め」

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
ベクトルの基本的な考え方、ベクトルの和、始点の変更に関して解説していきます.
この動画を見る 

【高校数学】 数B-4 ベクトルの式の計算①

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の式を簡単にしよう。

①$(3\vec{ a }-2\vec{ b })-(\vec{ a }-5\vec{ b })$

②$-5(2\vec{ a }-\vec{ b })+3(\vec{ a }-2\vec{ b })$

◎次の等式を満たす$\vec{ x }$を$\vec{ a },\vec{ b }$を用いて表そう。

③$5\vec{ x }-6\vec{ a }=2\vec{ b }+3\vec{ x }$

④$3(2\vec{ a }-\vec{ b }+\vec{ x })=9\vec{ a }+\vec{ b }$
この動画を見る 
PAGE TOP