問題文全文(内容文):
2010広島大学
4で割ると余りが1である自然数全体の集合をAとする。
(1)m,nを0以上の整数とする。
m+nが偶数ならば$3^m7^n$はAに属し、m+nが奇数なら$3^m7^n$はAに属さないことを証明せよ。
(2)$3^{2m+1}7^{2n+1}$の正の約数のうちAに属する数の総和
2010広島大学
4で割ると余りが1である自然数全体の集合をAとする。
(1)m,nを0以上の整数とする。
m+nが偶数ならば$3^m7^n$はAに属し、m+nが奇数なら$3^m7^n$はAに属さないことを証明せよ。
(2)$3^{2m+1}7^{2n+1}$の正の約数のうちAに属する数の総和
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
2010広島大学
4で割ると余りが1である自然数全体の集合をAとする。
(1)m,nを0以上の整数とする。
m+nが偶数ならば$3^m7^n$はAに属し、m+nが奇数なら$3^m7^n$はAに属さないことを証明せよ。
(2)$3^{2m+1}7^{2n+1}$の正の約数のうちAに属する数の総和
2010広島大学
4で割ると余りが1である自然数全体の集合をAとする。
(1)m,nを0以上の整数とする。
m+nが偶数ならば$3^m7^n$はAに属し、m+nが奇数なら$3^m7^n$はAに属さないことを証明せよ。
(2)$3^{2m+1}7^{2n+1}$の正の約数のうちAに属する数の総和
投稿日:2018.06.01