問題文全文(内容文):
${\Large\boxed{1}}$ 次の式を満たす整数の組($x,y,z$)の個数を求めよ。
(1)$x+y+z=9$ ($x,y,z$は$0$以上の整数)
(2)$x+y+z=9$ ($x,y,z$は自然数)
(3)$x+y+z \leqq 9$ ($x,y,z$は$0$以上の整数)
(4)$x+y+z \leqq 9$ ($x \geqq 1,y \geqq 0,z \geqq 0$)
${\Large\boxed{1}}$ 次の式を満たす整数の組($x,y,z$)の個数を求めよ。
(1)$x+y+z=9$ ($x,y,z$は$0$以上の整数)
(2)$x+y+z=9$ ($x,y,z$は自然数)
(3)$x+y+z \leqq 9$ ($x,y,z$は$0$以上の整数)
(4)$x+y+z \leqq 9$ ($x \geqq 1,y \geqq 0,z \geqq 0$)
単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 次の式を満たす整数の組($x,y,z$)の個数を求めよ。
(1)$x+y+z=9$ ($x,y,z$は$0$以上の整数)
(2)$x+y+z=9$ ($x,y,z$は自然数)
(3)$x+y+z \leqq 9$ ($x,y,z$は$0$以上の整数)
(4)$x+y+z \leqq 9$ ($x \geqq 1,y \geqq 0,z \geqq 0$)
${\Large\boxed{1}}$ 次の式を満たす整数の組($x,y,z$)の個数を求めよ。
(1)$x+y+z=9$ ($x,y,z$は$0$以上の整数)
(2)$x+y+z=9$ ($x,y,z$は自然数)
(3)$x+y+z \leqq 9$ ($x,y,z$は$0$以上の整数)
(4)$x+y+z \leqq 9$ ($x \geqq 1,y \geqq 0,z \geqq 0$)
投稿日:2018.06.29