福田の一夜漬け数学〜順列・組合せ(1)〜4桁の数の個数 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜順列・組合せ(1)〜4桁の数の個数

問題文全文(内容文):
${\Large\boxed{1}}$ $0,1,2,3,4,5,6$から4個の数を選んで4桁の数を作る。
最高位の数から順に$a_1,a_2,a_3,a_4$とする。
異なる4個の数を選ぶとき
 (1)何個の数ができるか。
 (2)偶数は何個できるか。
 (3)5の倍数は何個できるか。
 (4)3の倍数は何個できるか。
 (5)6の倍数は何個できるか。
 (6)$a_1 \lt a_2 \lt a_3 \lt a_4$となる個数。
同じ数を何回用いてもよいとき
 (7)何個の数ができるか。
 (8)偶数は何個できるか。
 (9)$a_1 \leqq a_2 \leqq a_3 \leqq a_4$となる個数。
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $0,1,2,3,4,5,6$から4個の数を選んで4桁の数を作る。
最高位の数から順に$a_1,a_2,a_3,a_4$とする。
異なる4個の数を選ぶとき
 (1)何個の数ができるか。
 (2)偶数は何個できるか。
 (3)5の倍数は何個できるか。
 (4)3の倍数は何個できるか。
 (5)6の倍数は何個できるか。
 (6)$a_1 \lt a_2 \lt a_3 \lt a_4$となる個数。
同じ数を何回用いてもよいとき
 (7)何個の数ができるか。
 (8)偶数は何個できるか。
 (9)$a_1 \leqq a_2 \leqq a_3 \leqq a_4$となる個数。
投稿日:2018.06.22

<関連動画>

福田の数学〜2023年共通テスト速報〜数学IA第3問場合の数

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
第3問
番号によって区別された複数の球が、何本かのひもでつながれている。ただし、各ひもはその両端で二つの球をつなぐものとする。次の条件を満たす球の塗り分け方(以下、球の塗り方)を考える。
【条件】
・それぞれの球を、用意した5色(赤、青、黄、緑、紫)のうちのいずれか1色で塗る。
・1本のひもでつながれた二つの球は異なる色になるようにする。
・同じ色を何回使ってもよく、また使わない色があってもよい。
例えば図A(※動画参照)では、三つの球が2本のひもでつながれている。この三つの球を塗るとき、球1の塗り方が5通りあり、球1を塗った後、球2の塗り方は4通りあり、さらに球3の塗り方は4通りある。したがって、球の塗り方の総数は80である。
(1)図B(※動画参照)において、球の塗り方は$\boxed{\ \ アイウ\ \ }$通りある。
(2)図C(※動画参照)において、球の塗り方は$\boxed{\ \ エオ\ \ }$通りある。
(3)図D(※動画参照)における球の塗り方のうち、赤をちょうど2回使う塗り方は$\boxed{\ \ カキ\ \ }$通りある。
(4)図E(※動画参照)における球の塗り方のうち、赤をちょうど3回使い、かつ青をちょうど2回使う塗り方は$\boxed{\ \ クケ\ \ }$通りある。
(5)図Dにおいて、球の塗り方の総数を求める。
そのために、次の構想を立てる。
【構想】
図Dと図Fを比較する。

図Fでは球3と球4が同色になる球の塗り方が可能であるため、図Dよりも図Fの球の塗り方の総数の方が大きい。
図Fにおける球の塗り方は、図Bにおける球の塗り方と同じであるため、全部で$\boxed{\ \ アイウ\ \ }$通りある。そのうち球3と球4が同色になる球の塗り方の総数と一致する図として、後の⓪~④のうち、正しいものは$\boxed{\boxed{\ \ コ\ \ }}$である。したがって、図Dにおける球の塗り方は$\boxed{\ \ サシス\ \ }$通りある。
$\boxed{\boxed{\ \ コ\ \ }}$の解答群
(解答群は動画参照)
(6)図Gにおいて、球の塗り方は$\boxed{\ \ セソタチ\ \ }$通りある。

2023共通テスト過去問
この動画を見る 

福田の数学〜北海道大学2025理系第5問〜条件を満たす3つの整数を選び出す場合の数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

$n$を$3$以上の整数とする。

(1)$k$を整数とする。

$k\lt a\lt b \lt c \leqq k+n$を満たす

整数$a,b,c$の選び方の

総数を$n$の式で表せ。

(2)$1\leqq a \lt b \lt c \leqq 2n$を満たす

整数$a,b,c$のうち、

$a+b \gt c$となる$a,b,c$の選び方の総数を$L$とする。

このとき、$L\gt {}_n \mathrm{ C }_3 $であることを示せ。
   
この動画を見る 

福田の数学〜早稲田大学2022年社会科学部第1問〜条件付き確率と大小比較

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
ある国の国民がある病気に罹患している確率を$p$とする。
その病気の検査において、罹患者が陽性と判定される確率を$q$,
非罹患者が陽性と判定される確率を$r$とする。ただし$0 \lt p \lt 1,\ 0 \lt r \lt q$である。
さらに、検査で陽性と判定された人が罹患している確率を$s$とする。次の問いに答えよ。
(1)$s$を$p,\ q,\ r$を用いて表せ。
(2)$k$回すべて陽性と判定されれば最終的に陽性と判断される場合、最終的に陽性
と判断された人が罹患している確率を$a_k$とする。$a_k$を$p,q,r,k$を用いて表せ。
(3)$k$回のうち1回でも陽性と判定されれば最終的に陽性と判断される場合、
最終的に陽性と判断された人が罹患している確率を$b_k$とする。$b_k$を$p,q,r,k$を用いて表せ。
(4)$s,\ a_2,\ b_2$の大小関係を示せ。

2022早稲田大学社会科学部過去問
この動画を見る 

福田の数学〜青山学院大学2025理工学部第1問〜さいころの目によって平面上を動く点に関する確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

$1$個のさいころを$4$回続けて投げる

反復試行において、

さいころの出る目を順に$X_1,X_2,X_3,X_4$として、

$xy$平面上の$4$点$P_1,P_2,P_3,P_4$を

以下のように定める。

$1$.原点$O$から$x$軸の正の向きに$X_1$だけ進んだ位置に

ある点を$P_1$とする。

$2$.$P_1$から$y$軸の正の向きに$X_2$だけ進んだ位置に

ある点を$P_2$とする。

$3$.$P_2$から$x$軸の負の向きに$X_3$だけ進んだ位置に

ある点を$P_3$とする。

$4$.$P_3$から$y$軸の負の向きに$X_4$だけ進んだ位置に

ある点を$P_4$とする。

例えば、さいころの出た目が順に$3,2,5,5$ならば

$P_1,P_2,P_3,P_4$の座標はそれぞれ

$(3,0),(3,2),(-2,2),(-2,-3)$となる。

(1)$P_4$が$O$と一致する確率は$\dfrac{\boxed{ア}}{\boxed{イウ}}$である。

(2)線分$OP_1$と線分$P_3P_4$が共有点をもつ確率は

$\dfrac{\boxed{エオ}}{\boxed{カキク}}$である。

ただし、線分は両方の端点を含むものとする。

(3)$P_4$の座標が$(3,3)$である確率は

$\dfrac{\boxed{ケ}}{\boxed{コサシ}}$である。
    
この動画を見る 

福田のおもしろ数学009〜あなたはネコを見つけられるか〜箱から箱へ移動するネコを見つける方法

アイキャッチ画像
単元: #数A#場合の数と確率#確率#その他#その他#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
あなたはネコを見つけられるか?
猫は毎晩となりの箱に移動する。
開けられる箱は毎朝ひとつだけ。
この動画を見る 
PAGE TOP