問題文全文(内容文):
千葉大学過去問題
n,Nは自然数
(1)5以上の素数は6n+1の形で表されることを示せ。
(2)6N-1は、6n-1の形で表される素数を約数にもつことを示せ。
(3)6n-1の形で表される素数は無限にあることを示せ。
千葉大学過去問題
n,Nは自然数
(1)5以上の素数は6n+1の形で表されることを示せ。
(2)6N-1は、6n-1の形で表される素数を約数にもつことを示せ。
(3)6n-1の形で表される素数は無限にあることを示せ。
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#千葉大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
千葉大学過去問題
n,Nは自然数
(1)5以上の素数は6n+1の形で表されることを示せ。
(2)6N-1は、6n-1の形で表される素数を約数にもつことを示せ。
(3)6n-1の形で表される素数は無限にあることを示せ。
千葉大学過去問題
n,Nは自然数
(1)5以上の素数は6n+1の形で表されることを示せ。
(2)6N-1は、6n-1の形で表される素数を約数にもつことを示せ。
(3)6n-1の形で表される素数は無限にあることを示せ。
投稿日:2018.07.20