【数Ⅲ】三角関数での置換【知らないと絶対にできない置換積分】 - 質問解決D.B.(データベース)

【数Ⅲ】三角関数での置換【知らないと絶対にできない置換積分】

問題文全文(内容文):
$ (1)\displaystyle \int_{0}^{1}\dfrac{1}{\sqrt{4-x^2}}dxを求めよ.$
$ (2)\displaystyle \int_{0}^{\sqrt3}\dfrac{0}{x^2+1}dxを求めよ.$
$ (3)\displaystyle \int_{0}^{1}\dfrac{1}{x^2+4x+3}dx,\displaystyle \int_{0}^{1}\dfrac{1}{x^2+4x+4}dx,\displaystyle \int_{-2}^{-1}\dfrac{1}{x^2+4x+5}dxを求めよ.$
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: めいちゃんねる
問題文全文(内容文):
$ (1)\displaystyle \int_{0}^{1}\dfrac{1}{\sqrt{4-x^2}}dxを求めよ.$
$ (2)\displaystyle \int_{0}^{\sqrt3}\dfrac{0}{x^2+1}dxを求めよ.$
$ (3)\displaystyle \int_{0}^{1}\dfrac{1}{x^2+4x+3}dx,\displaystyle \int_{0}^{1}\dfrac{1}{x^2+4x+4}dx,\displaystyle \int_{-2}^{-1}\dfrac{1}{x^2+4x+5}dxを求めよ.$
投稿日:2023.02.18

<関連動画>

こういう問題に苦手意識ある人は必見です【甲南大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
次の2つの等式を満たす多項式$(x),g(x)$及び定数$a$を求めよ。

$\displaystyle \int_{1}^{x} f(t) dt=2xg(x)-3x+a $

$g(x)=x^2+x \displaystyle \int_{0}^{1} f(t)dx+1$

甲南大過去問
この動画を見る 

【高校数学】千葉大学の積分の問題をその場で解説しながら解いてみた!毎日積分94日目~47都道府県制覇への道~【㊲千葉】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【千葉大学 2023】
等式$\displaystyle f(x)=x^2+\int_{-1}^{2}(xf(t)-t)dt$を満たす関数$f(x)$を求めよ。
この動画を見る 

#千葉大学2024#定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#千葉大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
以下の定積分を解け。
$\displaystyle \int_{0}^{\frac{2}{3}\pi} x^2\sin x$ $dx$

出典:2024年千葉大学
この動画を見る 

#数検準1級-1#定積分#ますただ

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{e-1} \displaystyle \frac{x}{(x+1)^2} dx$

出典:数検準1級1次
この動画を見る 

#明治大学2023#定積分_24#元高校教員

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{3}} \sin^2 2x dx$

出典:2023年明治大学
この動画を見る 
PAGE TOP