問題文全文(内容文):
(1)$ y=\sin x(0 \leqq x \leqq \pi)$上の点Pからx軸に下ろした垂線の足を点Qとする.
PQを1辺とするxy平面に垂直な正方形を作る.点Pが(0,0)から$ (\pi,0)$まで動くとき,
この正方形が通過する部分の体積を求めよ.
(2)$ y=x^2-3x $とx軸で囲まれた部分をx軸の周りに1回転させてできる立体の体積を求めよ.
(1)$ y=\sin x(0 \leqq x \leqq \pi)$上の点Pからx軸に下ろした垂線の足を点Qとする.
PQを1辺とするxy平面に垂直な正方形を作る.点Pが(0,0)から$ (\pi,0)$まで動くとき,
この正方形が通過する部分の体積を求めよ.
(2)$ y=x^2-3x $とx軸で囲まれた部分をx軸の周りに1回転させてできる立体の体積を求めよ.
単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
めいちゃんねる
問題文全文(内容文):
(1)$ y=\sin x(0 \leqq x \leqq \pi)$上の点Pからx軸に下ろした垂線の足を点Qとする.
PQを1辺とするxy平面に垂直な正方形を作る.点Pが(0,0)から$ (\pi,0)$まで動くとき,
この正方形が通過する部分の体積を求めよ.
(2)$ y=x^2-3x $とx軸で囲まれた部分をx軸の周りに1回転させてできる立体の体積を求めよ.
(1)$ y=\sin x(0 \leqq x \leqq \pi)$上の点Pからx軸に下ろした垂線の足を点Qとする.
PQを1辺とするxy平面に垂直な正方形を作る.点Pが(0,0)から$ (\pi,0)$まで動くとき,
この正方形が通過する部分の体積を求めよ.
(2)$ y=x^2-3x $とx軸で囲まれた部分をx軸の周りに1回転させてできる立体の体積を求めよ.
投稿日:2023.05.13





