これどれくらいすごいん? - 質問解決D.B.(データベース)

これどれくらいすごいん?

問題文全文(内容文):
7つのサイコロがゾロ目になる確率を計算
単元: #数学(中学生)#中2数学#数A#場合の数と確率#確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
7つのサイコロがゾロ目になる確率を計算
投稿日:2023.09.16

<関連動画>

なるほど!コメント欄は勉強になります

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
1~nの自然数から3つ選ぶ.
3の数のどの2つも連続でない確率を求めよ.

2021近畿大(医)
この動画を見る 

【高校数学】 数B-103 期待値①

アイキャッチ画像
単元: #数A#場合の数と確率#確率#確率分布と統計的な推測#確率分布#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の確率変数$X$の期待値を求めよう.

①白玉5個と黒玉3個が入った袋から3個の玉を同時に取り出すとき,
その中に含まれる黒玉の個数$X$

②1個のさいころを3回投げるとき,3の倍数の目が出た回数$X$
この動画を見る 

福田の数学〜東京理科大学2023年創域理工学部第1問(1)〜確率の基本性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)(a)1個のさいころを4回続けて投げるとき、4回とも同じ目が出る確率は
$\displaystyle\frac{1}{\boxed{\ \ アイウ\ \ }}$であり、3, 4, 5, 6の目がそれぞれ1回ずつ出る確率は$\displaystyle\frac{1}{\boxed{\ \ エオ\ \ }}$である。
(b)1個のさいころを4回続けて投げて、出た目を順に左から並べて4桁の整数Nを作る。例えば、1回目に2、2回目に6、3回目に1、4回目に2の目がでた場合はN=2612である。Nが偶数となる確率は$\displaystyle\frac{1}{\boxed{\ \ カ\ \ }}$であり、N≧2023 となる確率は$\displaystyle\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}$であり、N≧5555 となる確率は$\displaystyle\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシス\ \ }}$である。
この動画を見る 

福田のわかった数学〜高校1年生074〜場合の数(13)整数解の個数

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 場合の数(13) 整数解の個数
次の条件を満たす整数の組(x,y,z,u)は何個あるか。
(1)$x+y+z+u=10, x \geqq 0, y \geqq 0, z \geqq 0, u \geqq 0$
(2)$x+y+z+u=10, x \geqq 1, y \geqq 1, z \geqq 1, u \geqq 1$
(3)$x+y+z+u \leqq 10, x \geqq 0, y \geqq 0, z \geqq 0, u \geqq 0$
この動画を見る 

【数A】確率:東北大 2008年 大問4(2)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
点Pが次のルール (i), (i) に従って数直線上を移動するものとする。
(i)$1,2,3,4,5,6$の目が同じ割合で出るサイコロを振り, 出た目の数をkとする.
(ii)Pの座標aについて, $a\gt 0$ならば座標$a-k$の点へ移動し, $a\gt 0$ならば座標$a+k$の点へ移動する.
(iii)原点に移動したら終了し, そうでなければ(i) を繰り返す。

(2) Pの座標が$1,2,... 6$ のいずれかであるとき,
ちょうど n回サイコロを振って
原点で終了する確率を求めよ.
この動画を見る 
PAGE TOP