福田の1.5倍速演習〜合格する重要問題051〜東京理科大学2019年度理工学部第1問(2)〜桁数と最高位の数 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題051〜東京理科大学2019年度理工学部第1問(2)〜桁数と最高位の数

問題文全文(内容文):
$\Large{\boxed{1}}$ (2)$\log_{10}2=0.3010$, $\log_{10}3=0.4771$とする。$2^{36}$は$\boxed{\ \ テト \ \ }$桁の整数である。
$3^n$が$\boxed{\ \ テト \ \ }$桁の整数となる最小の自然数$n$は$\boxed{\ \ ナニ \ \ }$であり、$2^{36}+6×3^{\boxed{\ \ ナニ \ \ }}$
は$\boxed{\ \ ヌネ \ \ }$桁の整数である。

2019東京理科大学理工学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (2)$\log_{10}2=0.3010$, $\log_{10}3=0.4771$とする。$2^{36}$は$\boxed{\ \ テト \ \ }$桁の整数である。
$3^n$が$\boxed{\ \ テト \ \ }$桁の整数となる最小の自然数$n$は$\boxed{\ \ ナニ \ \ }$であり、$2^{36}+6×3^{\boxed{\ \ ナニ \ \ }}$
は$\boxed{\ \ ヌネ \ \ }$桁の整数である。

2019東京理科大学理工学部過去問
投稿日:2023.01.05

<関連動画>

#福島大学2024#定積分_4#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#福島大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} x\sqrt{ 1-x }$ $dx$

出典:2024年福島大学
この動画を見る 

大学入試問題#249 早稲田大学(2014) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#積分とその応用#定積分#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a,b$を正の定数
$\displaystyle \int_{0}^{2\pi}|a\ \sin\ x+b\ \cos\ x|dx$を求めよ。

出典:2014年早稲田大学 入試問題
この動画を見る 

福田のわかった数学〜高校2年生057〜通過範囲(2)直線の通過範囲

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$通過範囲(2)
mが$0 \leqq m \leqq 1$の実数を動くとき、直線
$y=mx+m^2$
が通過する領域を図示せよ。
この動画を見る 

福田の数学〜東京理科大学2023年創域理工学部第3問〜対数関数と直線で囲まれた図形の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 座標平面上で、曲線$y$=$\sqrt 5\log x$ ($x$>0)を$C$とし、$C$上の点A($a$, $\sqrt 5\log a$) ($a$>0)をとる。ただし、$\log$は自然対数とする。点Aにおける$C$の接線を$l$とし、$l$と$y$軸の交点をQ(0,$q$)とする。また、点Aにおける$C$の法線を$m$とし、$m$と$y$軸の交点をR(0,$r$)とする。
(1)$q$を、$a$を用いて表せ。
(2)$r$を、$a$を用いて表せ。
(3)線分QRの長さが$3\sqrt 5$となるような$a$の値を求めよ。
(4)$\angle$ARQ=$\frac{\pi}{6}$となるような$a$の値を求めよ。
(5)$a$=$e^2$とする。このとき、$x$軸、曲線$C$および直線$l$で囲まれた部分の面積を求めよ。ただし、$e$は自然対数の底である。
この動画を見る 

福田の数学〜慶應義塾大学2025経済学部第1問(2)〜2変数の不等式と領域

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(2)不等式

$\vert m+n-6 \vert + \vert m-n-2 \vert \leqq 6 \cdots ①$

を満たす整数$m,n$を考える。

$(m+n-6)(m-n-2)\geqq 0$のとき、$m$と$n$が

不等式①を満たすための必要十分条件は

$\boxed{セ} \leqq m \leqq \boxed{ソ}$

である。

同様に、$(m+n-6)(m-n-2)\leqq 0$のとき、

$m$と$n$が①を満たすための必要十分条件は

$\boxed{タチ}\leqq n \leqq \boxed{ツ}$

である。よって、$m$と$n$が①を満たすとき、

$(m-n)(m+n-6)$の最大値は、

$(m-n)(m+n-6)=(m-\boxed{テ})^2-(n-\boxed{ト})^2$

より$\boxed{ナニ}$である。

$2025$年慶應義塾大学経済学部過去問題
この動画を見る 
PAGE TOP