【コツ】三角関数のグラフの書き方 - 質問解決D.B.(データベース)

【コツ】三角関数のグラフの書き方

問題文全文(内容文):
三角関数のグラフの書き方紹介動画です
-----------------
(1)$y=\sin(\theta -\displaystyle \frac{\pi}{3})$

(2)$y=\cos(\theta+\displaystyle \frac{\pi}{6})$

(3)$y=\tan(\theta-\displaystyle \frac{\pi}{4})$
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
三角関数のグラフの書き方紹介動画です
-----------------
(1)$y=\sin(\theta -\displaystyle \frac{\pi}{3})$

(2)$y=\cos(\theta+\displaystyle \frac{\pi}{6})$

(3)$y=\tan(\theta-\displaystyle \frac{\pi}{4})$
投稿日:2020.09.27

<関連動画>

【0≦θ≦πを問題文に追加】微分すると大変かも・・・ By ~らん~

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#数学(高校生)#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$m,n$:自然数
$m \geqq 2$
$f(\theta)=\displaystyle \frac{\sin\ n\theta}{\cos\ n\theta+m}$の最大値を$\alpha(m,n)$とする
$\displaystyle \sum_{m=2}^\infty \{\alpha(m,n)\}^2$を求めよ
この動画を見る 

福田の数学〜立教大学2025経済学部第2問〜2点の位置関係と三角関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

$p,q$を正の実数とする。

原点を$O$とする座標平面上に

点$A(1,0)$、点$P\left(p,\dfrac{1}{p}\right)$,点$Q\left(q,\dfrac{2}{q}\right)$がある。

$\angle AOP=\alpha,\angle AOQ=\beta$とおき、

$P,Q$は$\alpha \lt \beta$を満たしながら動くものとする。

三角形$OPQ$の面積を$S$とし、

また、$T=\tan(\beta-\alpha)$とおく。

(1)$\cos\alpha,\sin\alpha$をそれぞれ$p$を用いて表せ。

また、$\cos\beta,\sin\beta$をそれぞれ$q$を用いて表せ。

(2)$T$を$p,q$を用いて表せ。

(3)$S$を$p,q$を用いて表せ。

(4)$t=pq$とおく。$\dfrac{S}{T}$を$t$を用いて表せ。

(5)$\dfrac{S}{T}$の最小値を求めよ。

$2025$年立教大学経済学部過去問題
この動画を見る 

福田の数学〜立教大学2024年理学部第1問(1)〜三角方程式の基本

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (1)実数$x$が$3\cos x$=$\sin^2x$ を満たすとき、$\cos x$の値は$\boxed{\ \ ア\ \ }$である。
この動画を見る 

大学入試問題#608「絶対値・・・・」 横浜市立大学(2009) #定積分

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#三角関数#三角関数とグラフ#加法定理とその応用#積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\frac{\pi}{6}}^{\frac{\pi}{2}} |\sin2\ x| \sin\ x\ dx$

出典:2009年横浜市立大学 入試問題
この動画を見る 

東大 三角比 放物線 Mathematics Japanese university entrance exam Tokyo University

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#図形と計量#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=2 \sqrt{ 3 }(x- \cos \theta)^2+ \sin \theta$
$y=-2 \sqrt{ 3 }(x+ \cos \theta)^2- \sin \theta$
この2つの放物線が相違となる2点で交わるような$\theta$の範囲

出典:2002年東京大学 過去問
この動画を見る 
PAGE TOP