【秘技を覚えよ】円の接線の方程式 - 質問解決D.B.(データベース)

【秘技を覚えよ】円の接線の方程式

問題文全文(内容文):
円の接線の方程式解説動画です
-----------------
直線$y=\sqrt{ 3 }x$と、円$(x-3)^2+y^2=4$の交点を通る、円$(x-3)^2+y^2=4$上の接線の方程式を求めよ。
単元: #数Ⅱ#円と方程式#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
円の接線の方程式解説動画です
-----------------
直線$y=\sqrt{ 3 }x$と、円$(x-3)^2+y^2=4$の交点を通る、円$(x-3)^2+y^2=4$上の接線の方程式を求めよ。
投稿日:2020.10.21

<関連動画>

【数Ⅱ】円を表す方程式【図形と方程式の関係】

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式
指導講師: めいちゃんねる
問題文全文(内容文):
円を表す方程式を求めよ.
この動画を見る 

福田の数学〜東京理科大学2022年理工学部第1問(2)〜三角方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#円と方程式#加法定理とその応用#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)角θに関する方程式
$\cos 4θ=\cos θ(0\leqq θ\leqq \pi)$
について考える。①を満たすθは小さい方から順に
$θ=0,\frac{\boxed{キ}}{\boxed{ク}}\pi,\frac{\boxed{ケ}}{\boxed{コ}}\pi,\frac{\boxed{サ}}{\boxed{シ}}\pi$
の4つである。一方、θが①を満たすとき、$t=\cos θ$とおくとtは
$\boxed{ス}t^4 - \boxed{セ}t^2+\boxed{ソ}=t$
を満たす。$t=1,\cos \frac{\boxed{ケ}}{\boxed{コ}}\pi$は②の解なので、2次方程式
$\boxed{タ}t^2+\boxed{チ}t-1=0$
は$\cos \frac{\boxed{キ}}{\boxed{ク}}\pi,\cos \frac{\boxed{サ}}{\boxed{シ}}\pi$を解にもつ。これより、
$\cos \frac{\boxed{キ}}{\boxed{ク}}\pi=\frac{\sqrt{\boxed{ツ}}-\boxed{テ}}{\boxed{ト}},\cos \frac{\boxed{サ}}{\boxed{シ}}\pi=-\frac{\sqrt{\boxed{ツ}}+\boxed{テ}}{\boxed{ト}}$であることが分かる。
この動画を見る 

【数Ⅱ】図形と方程式:円と直線! aを実数とする。円x²+y²-4x-8y+15=0と直線y=ax+1が 異なる2点A,Bで交わっている。 (2)弦ABの長さが最大になるときのaの値を求めなさい。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを実数とする。円$x^2+y^2-4x-8y+15=0$と直線$y=ax+1$が 異なる2点A,Bで交わっている。 (2)弦ABの長さが最大になるときのaの値を求めなさい。
この動画を見る 

福田のわかった数学〜高校2年生022〜円の外部から引いた接線の求め方

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 円の方程式
円$C:x^2+y^2=4$ の接線で$(2,3)$を通るものと
そのときの接点を次の3通りの方法で求めよ。
(1)接線の公式$x_1x+y_1=r^2$ を利用
(2)点と直線の距離の公式を利用
(3)判別式を利用
この動画を見る 

重積分⑧-1【一般の変数変換】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#数学検定・数学甲子園・数学オリンピック等#図形と方程式#円と方程式#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学検定#数学検定1級#数学(高校生)#数Ⅲ#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
楕円面$\frac{x^2}{a^2}+ \frac{y^2}{b^2}+\frac{z^2}{c^2}=1$
で囲まれる立体の体積Vを求めよ $(a,b,c > 0)$
この動画を見る 
PAGE TOP