複素数の10乗の虚部の値 - 質問解決D.B.(データベース)

複素数の10乗の虚部の値

問題文全文(内容文):
$(\displaystyle \frac{1+\sqrt{7} i}{2})^{10}$
虚数部分を求めよ
$ \sin α =\sqrt{\displaystyle \frac{7}{8}}$
$\displaystyle \frac{3π}{8} \lt a \lt \displaystyle \frac{12π}{31}$
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(\displaystyle \frac{1+\sqrt{7} i}{2})^{10}$
虚数部分を求めよ
$ \sin α =\sqrt{\displaystyle \frac{7}{8}}$
$\displaystyle \frac{3π}{8} \lt a \lt \displaystyle \frac{12π}{31}$
投稿日:2022.02.10

<関連動画>

千葉大 複素数 極形式 7乗根

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#千葉大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=\cos \displaystyle \frac{2}{7}\pi+i \sin \displaystyle \frac{2}{7}\pi$

(1)
$\alpha+\alpha^2+\alpha^3+\alpha^4+\alpha^5+\alpha^6$

(2)
$(1-\alpha)(1-\alpha^2)(1-\alpha^3)(1-\alpha^4)$
$(1-\alpha^5)(1-\alpha^6)$

(1)(2)それぞれ値を求めよ

出典:千葉大学 過去問
この動画を見る 

自治医大 三次方程式の解

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#複素数#複素数平面#図形への応用#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023自治医科大学過去問題
kは実数
$x^3-6x^2+kx-7 = 0$
の3つの解は複素数平面で1辺の長さが$\sqrt{3}$の正三角形の頂点となる
kの値
この動画を見る 

神戸大 複素数の連立方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z\omega=z^3=\omega^4$を満たす複素数の組$(z,\omega)$の個数を求めよ.

1999神戸大過去問
この動画を見る 

横浜市(医)複素数の2次方程式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#2次方程式と2次不等式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#横浜市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'00横浜市立大学過去問題
虚部が正の複素数Zで$iZ^2+2iZ+\frac{1}{2}+i=0$をみたすZを
$Z=a+bi$(a,b実数.b>0)の形で求めよ。
この動画を見る 

素数問題

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p,q,r$は異なる素数である.
$p^2=q^2+8r^2$を解け.
この動画を見る 
PAGE TOP