2重階乗 中央大附属 (誘導は動画内あり)動画の最後に。。。 - 質問解決D.B.(データベース)

2重階乗 中央大附属 (誘導は動画内あり)動画の最後に。。。

問題文全文(内容文):
自然数nに対して $n! = n×(n-1)×(n-2)× \cdots ×3×2×1$
正の偶数mに対して$m!!= mx(m-2)×(m-4)× \cdots ×6×4×2$
(例)6!=6×5×4×3×2×1 , 6!! = 6×4×2
$(2k)!!$を$k!$を用いて表せ
(k:自然数)

2023中央大学付属高等学校 (改)
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
自然数nに対して $n! = n×(n-1)×(n-2)× \cdots ×3×2×1$
正の偶数mに対して$m!!= mx(m-2)×(m-4)× \cdots ×6×4×2$
(例)6!=6×5×4×3×2×1 , 6!! = 6×4×2
$(2k)!!$を$k!$を用いて表せ
(k:自然数)

2023中央大学付属高等学校 (改)
投稿日:2023.10.02

<関連動画>

群数列 近江高校(改)

アイキャッチ画像
単元: #数学(中学生)#数列#数列とその和(等差・等比・階差・Σ)#高校入試過去問(数学)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
群数列
$\frac{1}{2} \quad \frac{2}{3} \quad \frac{1}{3} \quad \frac{3}{4} \quad \frac{2}{4} \quad \frac{1}{4} \quad \frac{4}{5} \quad \frac{3}{5} $
$① \quad ② \quad ③ \quad ④ \quad ⑤ \quad ⑥ \quad ⑦ \quad ⑧ $

近江高等学校(改)
この動画を見る 

【数B】数学的帰納法が意味不明な人へ【新しいイメージで考える】

アイキャッチ画像
単元: #数列#数学的帰納法#数学(高校生)#数B
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数B】数学的帰納法解説動画です
-----------------
$1^2+3^2+5^2+…+(2n-1)^2=$
$\displaystyle \frac{1}{2}n(2n-1)(2n+1)$を証明せよ
この動画を見る 

どっちがでかい?大事なあの公式のエレガントな証明

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?
$999! $vs $500^{999}$
この動画を見る 

福井大 漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#福井大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
一般項を求めよ$(n$自然数$)$
$a_1=1$
$a_{n+1}=\displaystyle \frac{3}{n}S_n$

出典:福井大学 過去問
この動画を見る 

福田の数学〜立教大学2021年理学部第1問(4)〜数列の和と不等式の評価

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (4)一般項がa_n=\frac{2}{n(n+2)}\ であるような数列\left\{a_n\right\}の初項から第\ n\ 項までの和\\
をS_nとする。S_n \gt \frac{7}{6}\ を満たす最小の自然数\ n\ は\ \boxed{\ \ オ\ \ }\ である。
\end{eqnarray}

2021立教大学理学部過去問
この動画を見る 
PAGE TOP