9999の倍数 洛南高校附属中 - 質問解決D.B.(データベース)

9999の倍数 洛南高校附属中

問題文全文(内容文):
8ケタの整数7A5BC3D1が9999の倍数になるとき
$A=? B=? C=? D=?$
洛南高等学校附属中学校
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
8ケタの整数7A5BC3D1が9999の倍数になるとき
$A=? B=? C=? D=?$
洛南高等学校附属中学校
投稿日:2023.09.02

<関連動画>

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$4^P+P^4+4$が素数となる素数Pをすべて求めよ
この動画を見る 

福田の数学〜一橋大学2025文系第1問〜正の約数の個数と関数の最大値

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

正の整数$n$に対し、$n$の正の約数の個数を

$d(n)$とする。

たとえば、$6$の正の約数は$1,2,3,6$の$4$個なので、

$d(6)=4$である。また、

$f(n)=\dfrac{d(n)}{\sqrt n}$

とする。

(1)$f(2025)$を求めよ。

(2)素数$p$と正の整数$k$の組で

$f(p^k)\leqq f(p^{k+1})$を満たすものを求めよ。

(3)$f(n)$の最大値と、そのときの$n$を求めよ。

$2025$年一橋大学文系過去問題
この動画を見る 

【高校数学】 数A-69 最大公約数・最小公倍数②

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①積が6300であり,最小公倍数が420であるような
2つの正の整数の最大公約数を求めよう.

②6と129が互いに素であるかどうか答えよう.

③最大公約数が12,最小公倍数が420である
2つの自然数の組をすべて求めよう.
この動画を見る 

3乗根のはずし方 類題 一橋大 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha =\sqrt[ 3 ]{ 10+6\sqrt{ 3 } },\beta=\sqrt[ 3 ]{ 10-6\sqrt{ 3 } }$

(1)
$\alpha+\beta$

(2)
$\alpha^n+\beta^n$は自然数であることを示せ。($n$自然数)

出典:一橋大学 過去問
この動画を見る 

福田の数学〜慶應義塾大学2024年理工学部第1問(1)〜6番目に大きい約数と6乗根に最も近い自然数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#指数関数#対数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
( 1 ) 2024 の約数の中で 1 番大きいものは 2024 だが、 6 番目に大きいものは ア である。 2024 の 6 乗根に最も近い自然数は イ である。
この動画を見る 
PAGE TOP