正多角形と円との関係は、スイカと塩の関係のようなものだ。花巻東(岩手県) - 質問解決D.B.(データベース)

正多角形と円との関係は、スイカと塩の関係のようなものだ。花巻東(岩手県)

問題文全文(内容文):
$\angle x $の大きさは?
①$20^\circ$
②$22.5^\circ$
③$25^\circ$
④$27.5^\circ$
⑤$30^\circ$
花巻東高等学校
単元: #数A#図形の性質#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle x $の大きさは?
①$20^\circ$
②$22.5^\circ$
③$25^\circ$
④$27.5^\circ$
⑤$30^\circ$
花巻東高等学校
投稿日:2023.08.13

<関連動画>

福田のおもしろ数学147〜3変数の不定方程式の一般解

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
35x+91y+65z=3 を満たす整数x, y, zを求めよ。
この動画を見る 

面積二等分する直線を選べ!!大阪府

アイキャッチ画像
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
長方形ABCDを面積の等しい2つの図形に分けるものを全て選べ。
(ア)直線AC
(イ)$\angle ABC$の二等分線
(ウ)辺BCの垂直二等分線
(エ)辺DAの中点とCを通る直線
*図は動画内参照

大阪府
この動画を見る 

福田の数学〜慶應義塾大学2022年総合政策学部第2問〜デコボコ数を数える

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{2}}$10進法で表したときm桁$(m \gt 0)$である正の整数nの第i桁目$(1 \leqq i \leqq m)$を
$m_i$としたとき、$i\neq j$のとき$n_i\neq n_j$であり、かつ、次の$(\textrm{a})$または$(\textrm{b})$のいずれか
が成り立つとき、nを10進法m桁のデコボコ数と呼ぶことにする。
$(\textrm{a})1 \leqq i \lt m$であるiに対して、
iが奇数の時$n_i \lt n_{i+1}$となり、
iが偶数の時$n_i \gt n_{i+1}$となる。
$(\textrm{b})1 \leqq i \lt m$であるiに対して、$i$が奇数の時$n_i \gt n_{i+1}$となり、
$i$が偶数の時$n_i \lt n_{i+1}$となる。

例えば、361は$(\textrm{a})$を満たす10進法3桁のデコボコ数であり、$52409$は$(\textrm{b})$を
満たす10進法5桁のデコボコ数である。なお、4191は$(\textrm{a})$を満たすが「$i\neq j$のとき
$n_i\neq n_j$である」条件を満たさないため、10進法4桁のデコボコ数ではない。
(1)nが10進法2桁の数$(10 \leqq n \leqq 99)$の場合、
$n_1\neq n_2$であれば$(\textrm{a})$または$(\textrm{b})$を
満たすため、10進法2桁のデコボコ数は$\boxed{\ \ アイ\ \ }$個ある。
(2)nが10進法3桁の数$(100 \leqq n \leqq 999)$の場合、$(\textrm{a})$を満たすデコボコ数は
$\boxed{\ \ ウエオ\ \ }$個、$(\textrm{b})$を満たすデコボコ数は$\boxed{\ \ カキク\ \ }$個あるため、
10進法3桁のデコボコ数は合計$\boxed{\ \ ケコサ\ \ }$個ある。
(3)nが10進法4桁の数$(1000 \leqq n \leqq 9999)$の場合、$(\textrm{a})$を満たすデコボコ数は
$\boxed{\ \ シスセソ\ \ }$個、$(\textrm{b})$を満たすデコボコ数は$\boxed{\ \ タチツテ\ \ }$個あるため、
10進法4桁のデコボコ数は合計$\boxed{\ \ トナニヌ\ \ }$個ある。また10進法4桁のデコボコ数
の中で最も大きなものは$\boxed{\ \ ネノハヒ\ \ }$、最も小さなものは$\boxed{\ \ フヘホマ\ \ }$である。

2022慶應義塾大学総合政策学部過去問
この動画を見る 

福田のおもしろ数学533〜凸四角形の性質に関する証明

アイキャッチ画像
単元: #数A#数Ⅱ#図形の性質#式と証明#周角と円に内接する四角形・円と接線・接弦定理#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

凸四角形$ABCD$において

$\angle CBD = 2\angle ADB,\angle ABD = 2\angle CDB,AB=CB$

のとき、

$AD=CD$を証明して下さい。

図は動画内参照
この動画を見る 

神様の順列 記述式だけど答えだけでいいんじゃね?

アイキャッチ画像
単元: #場合の数と確率
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023茨城大学過去問題
赤玉4個白玉5個入った袋から1個ずつ順に3個とり出す(もどさない)
3個目が白である確率
この動画を見る 
PAGE TOP