目で見てわかる 相加平均と相乗平均の関係 - 質問解決D.B.(データベース)

目で見てわかる 相加平均と相乗平均の関係

問題文全文(内容文):
$\frac{a+b}{2}$ $\sqrt {ab}$
どっちが大きい?(a>0, b>0)
*図は動画内参照
単元: #数Ⅰ#図形と計量#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{a+b}{2}$ $\sqrt {ab}$
どっちが大きい?(a>0, b>0)
*図は動画内参照
投稿日:2023.05.09

<関連動画>

中央値  2023中央大附属

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
15,a,20,b,11,24
平均値=17 , 中央値=16.5
a=? b=?
(ただし、a<b))

2023中央大学付属高等学校
この動画を見る 

【数学Ⅰ/高1の予習】3乗の展開公式

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の式を展開せよ。
(1)$(x+2)^3$
(2)$(3x-1)^3$
(3)$(2a-3b)^3$
この動画を見る 

【数Ⅰ】数と式:公式が通用しない?因数分解の対処法紹介!x³+2x²-9x-18を因数分解せよ。

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x³+2x²-9x-18$を因数分解せよ。
この動画を見る 

方程式

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$x^5+\dfrac{1}{x^5}=\dfrac{205}{16}\left(x+\dfrac{1}{x}\right)$
この動画を見る 

福田の数学〜慶應義塾大学2022年薬学部第3問〜データの分析・平均・標準偏差・共分散・相関係数

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ ある病院の入院患者10人に対して、病院内で作っている粉薬の評価を調査した。\hspace{50pt}\\
調査の評価項目は、粉薬の「飲みやすさ」と、「飲みやすさ」の要因と考えられる\\
「匂い」「舌触り」、「味」の計4項目についてである。\\
10人の患者が、評価項目について最も満足な場合は10、最も不安な場合は1として、\\
1以上10以下の整数で評価した。表内の平均値、分散、共分散の数値は四捨五入\\
されていない正確な値である。(※動画参照)\\
「飲みやすさ」との共分散は、「飲みやすさ」に対する評価の偏差と、各評価項目\\
に対する評価の偏差の積の平均値である。\\
(1)(\textrm{i})患者番号5の「舌触り」に対する(t)の値は\boxed{\ \ ニ\ \ }である。\\
(\textrm{ii})「飲みやすさ」に対する評価の標準偏差の値は\boxed{\ \ ヌ\ \ }である。\\
(2)「飲みやすさ」に対する評価と「舌触り」に対する評価の相関係数の値を\\
分数で表すと\boxed{\ \ ネ\ \ }である。\\
(3)「飲みやすさ」と「匂い」、「飲みやすさ」と「舌触り」、「飲みやすさ」と「味」\\
の相関係数の値をそれぞれr_1,r_2,r_3と表し、「匂い」、「舌触り」、「味」の評価の\\
平均値をそれぞれa_1,a_2,a_3と表す。a_i,r_i (1 \leqq i \leqq 3)に対し、\bar{ r }と\bar{ a }は以下の式で定める。\\
\bar{ r }=\frac{r_1+r_2+r_3}{3},    \bar{ a }=\frac{a_1+a_2+a_3}{3}\\
「飲みやすさ」との相関係数の値が最も1に近い評価項目は\ \boxed{\ \ ノ\ \ }\ である。\\
また、「r_i-\bar{ r } \lt0かつa_i-\bar{ a } \gt0」を満たす評価項目をすべて挙げると\ \boxed{\ \ ノ\ \ }\ である。\\
\\
(4)「匂い」、「舌触り」、「味」のうち、\ \boxed{\ \ ハ\ \ }\ にあてはまらない評価項目\\
(以降、この評価項目をXと表す)に関して改良を行った。改良後の紛薬に対して、同じ10人の\\
患者がXと「飲みやすさ」について再び評価した。\\
改良後の調査結果では、Xの評価は10人全員の評価が改良前に比べてそれぞれ1上がっていた。\\
改良後のXの評価の平均値を求めると\ \boxed{\ \ ヒ\ \ }\ であり、標準偏差は改良前調査における値と\\
比べて\ \boxed{\ \ フ\ \ }\ 。また、「飲みやすさ」の評価については、改良前の調査において評価が\\
1以上4以下の場合は2上がり、5以上9以下の場合は1上がり、10の場合は評価が変わらず\\
10であった。よって改良後の「飲みやすさ」に対する評価の平均値を求めると\ \boxed{\ \ ヘ\ \ }\ であり、\\
標準偏差は改良前の調査における値と比べて\ \boxed{\ \ ホ\ \ }。\\
\end{eqnarray}

2022慶應義塾大学薬学部過去問
この動画を見る 
PAGE TOP