共通テスト数学1A_第1問を簡単に解く方法教えます - 質問解決D.B.(データベース)

共通テスト数学1A_第1問を簡単に解く方法教えます

問題文全文(内容文):
[1]$c$を正の整数とする。$x$の2次方程式
  $2x^2+(4c-3)x+2c^2-c-11=0$ について考える。

(1)$c=1$のとき、①の左辺を因数分解すると
  $([ア]x+[イ])(x-[ウ])$
  であるから、①の解は
  $x=-\displaystyle \frac{[イ]}{[ア]},[ウ]$である。

(2)$c=2$のとき、①の解は
  $x=\displaystyle \frac{-[エ] \pm \sqrt{ [オカ] }}{[キ]}$
  であり、大きい方の解を$a$とすると
  $\displaystyle \frac{5}{a}=\displaystyle \frac{[ク] + \sqrt{ [ケコ] }}{[サ]}$
  である。また、$m<\displaystyle \frac{5}{a}<m+1$を満たす整数は[シ]である。

(3)太郎さんと花子さんは、①の解について考察している。
-----------------
太郎:①の解は$c$の値によって、ともに有理数である場合もあれば、
   ともに無理数である場合もあるね。
   $c$がどのような値のときに、解は有理数になるのかな。

花子:2次方程式の解の公式の根号の中に着目すればいいんじゃないかな。
-----------------
①の解が異なる二つの有理数であるような正の整数$c$の個数は[ス]個である。
単元: #数Ⅰ#数A#大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
[1]$c$を正の整数とする。$x$の2次方程式
  $2x^2+(4c-3)x+2c^2-c-11=0$ について考える。

(1)$c=1$のとき、①の左辺を因数分解すると
  $([ア]x+[イ])(x-[ウ])$
  であるから、①の解は
  $x=-\displaystyle \frac{[イ]}{[ア]},[ウ]$である。

(2)$c=2$のとき、①の解は
  $x=\displaystyle \frac{-[エ] \pm \sqrt{ [オカ] }}{[キ]}$
  であり、大きい方の解を$a$とすると
  $\displaystyle \frac{5}{a}=\displaystyle \frac{[ク] + \sqrt{ [ケコ] }}{[サ]}$
  である。また、$m<\displaystyle \frac{5}{a}<m+1$を満たす整数は[シ]である。

(3)太郎さんと花子さんは、①の解について考察している。
-----------------
太郎:①の解は$c$の値によって、ともに有理数である場合もあれば、
   ともに無理数である場合もあるね。
   $c$がどのような値のときに、解は有理数になるのかな。

花子:2次方程式の解の公式の根号の中に着目すればいいんじゃないかな。
-----------------
①の解が異なる二つの有理数であるような正の整数$c$の個数は[ス]個である。
投稿日:2021.12.23

<関連動画>

【高校数学】  数Ⅰ-68  2次不等式⑦ ・ 連立不等式編

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 + x-12 \leqq 0 \\
x^2 - 3x+2 \gt0
\end{array}
\right.
\end{eqnarray}$

②$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 - 4x+1 \geqq 0 \\
-x^2 - 12+ \gt x
\end{array}
\right.
\end{eqnarray}$

③$2 \geqq x^2-x \geqq 4x-4$
この動画を見る 

【数学Ⅰ/高1の予習】たすきがけを使う因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の式を因数分解せよ
$6x^2+7x+2$
この動画を見る 

【中学数学】平方根・ルートの計算演習~乗法公式2~ 2-9.5【中3数学】

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
$(\sqrt{5}-\sqrt{2})^2$

2⃣
$(\sqrt{3}-5)^2$

3⃣
$(\sqrt{3}+3\sqrt{5})^2$
この動画を見る 

最初につまずく因数分解

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
最初につまずく因数分解の紹介
$a(b^2-c^2)+b(c^2-a^2)+c(a^2-b^2)$
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試IⅡAB第2問〜2つのグラフの共有点の個数と面積

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#2次関数とグラフ#微分法と積分法#数学(高校生)#大学入試解答速報#数学#明治大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$$a,k$を実数とし、xの関数$f(x),\ g(x)$を次のようにする。
$f(x)=x^3-ax, g(x)=|x|+k$

(1)$a=4,\ k=0$のとき、曲線$y=f(x)$と$y=g(x)$は3個の異なる共有点をもつ。
それぞれの交点のx座標は$-\sqrt{\boxed{\ \ ア\ \ }},\ 0,\ \sqrt{\boxed{\ \ イ\ \ }}$である。

(2)$k=0$のとき、曲線$y=f(x)$と$y=g(x)$がちょうど2個の異なる共有点をもつ
aの範囲は$\boxed{\ \ ウ\ \ }$かつ$\boxed{\ \ エ\ \ }$である。

(3)$a=4$のとき、曲線$y=f(x)$と$y=g(x)$が3個の異なる共有点をもつkの範囲は
$-\frac{\boxed{\ \ オカ\ \ }\sqrt{\boxed{\ \ キク\ \ }}}{\boxed{\ \ ケ\ \ }} \lt k \lt \boxed{\ \ コ\ \ }$である。

(4)$a=4,\ k=\boxed{\ \ コ\ \ }$のとき、曲線$y=f(x)$と$y=g(x)$の共有点のx座標は$-\boxed{\ \ サ\ \ }$
と$\boxed{\ \ シ\ \ }+\sqrt{\boxed{\ \ ス\ \ }}$であり、$y=f(x)$と$y=g(x)$で囲まれる図形の面積は
$\boxed{\ \ セ\ \ }+\boxed{\ \ ソ\ \ }\sqrt{\boxed{\ \ タ\ \ }}$である。

$\boxed{\ \ ウ\ \ }$の解答群
$⓪-2 \lt a  ①-2 \leqq a  ②-1 \lt a  ③-1 \leqq a  ④0 \lt a$
$⑤0 \leqq a  ⑥1 \lt a  ⑦1 \leqq a  ⑧2 \lt a  ⑨2 \leqq a$

$\boxed{\ \ エ\ \ }$の解答群
$⓪a \lt -2  ①a \leqq -2  ②a \lt -1  ③a \leqq -1  ④a \lt 0$
$⑤a \leqq 0  ⑥a \lt 1  ⑦a \leqq 1  ⑧a \lt 2  ⑨a \leqq 2$

2021明治大学全統過去問
この動画を見る 
PAGE TOP