答えはわかるでしょう。 - 質問解決D.B.(データベース)

答えはわかるでしょう。

問題文全文(内容文):
a+b=69
(a34)2024+(b35)2023=?
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
a+b=69
(a34)2024+(b35)2023=?
投稿日:2023.04.07

<関連動画>

これ読める?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
3の(3の3乗)の計算を解説していきます.
この動画を見る 

これホンマなん?

アイキャッチ画像
単元: #指数関数と対数関数#指数関数#その他
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
片手で31まで数える方法に関して解説していきます。
この動画を見る 

埼玉大 3次不等式と不等式の証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#指数関数と対数関数#微分法と積分法#恒等式・等式・不等式の証明#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)(n+1)3>n3+(n1)3を満たす最大の整数nを求めよ.
(2)n=(1)の解,x>0のとき
(n+1)x+3>nx+3+(n1)x+3を証明せよ.

埼玉大過去問
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[2]。指数関数の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1[2]二つの関数f(x)=2x+2x2, g(x)=2x2x2について考える。
(1)f(0)=, g(0)=である。また、f(x)
相加平均と相乗平均の関係から、x=で最小値をとる。
g(x)=2となるxの値はlog2()である。

(2)次の①~④は、xにどのような値を代入しても常に成り立つ。
f(x)=   g(x)= 
{f(x)}2{g(x)}2=   
g(2x)= f(x)g(x) 

の解答群
f(x)    ①f(x)    ②g(x)    ③g(x)

(3)花子:①~④は三角関数の性質に似ているね。
太郎:三角関数の加法定理に類似した式(A)(D)を考えてみたけど、常に
成り立つ式はあるだろうか。
花子:成り立たない式を見つけるために、式(A)(D)β
何か具体的な値を代入して調べてみたら?

太郎さんが考えた式
f(αβ)=f(α)g(β)+g(α)f(β) (A) 
f(α+β)=f(α)g(β)+g(α)f(β) (B)
f(αβ)=f(α)g(β)+g(α)f(β) (C) 
f(α+β)=f(α)g(β)g(α)f(β) (D)

(1),(2)で示されたことのいくつかを利用すると、式(A)(D)のうち、
以外の3つは成り立たないことが分かる。は左辺と右辺を
それぞれ計算することによって成り立つことが確かめられる。

の解答群
(A)   ①(B)   ②(C)   ③(D)

2021共通テスト数学過去問
この動画を見る 

指数の計算

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
2x=3y
4xy+3yx=?
この動画を見る 
PAGE TOP preload imagepreload image