【数Ⅰ】2次関数:2次方程式が重解を持つ条件をわかりやすく解説! - 質問解決D.B.(データベース)

【数Ⅰ】2次関数:2次方程式が重解を持つ条件をわかりやすく解説!

問題文全文(内容文):
$4x²+(m-1)x+1=0$が重解を持つように、定数mの値を定めよ。
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$4x²+(m-1)x+1=0$が重解を持つように、定数mの値を定めよ。
投稿日:2020.06.11

<関連動画>

【中学数学】2次関数の問題~2024年度北海道公立高校入試大問3~【高校受験】

アイキャッチ画像
単元: #数学(中学生)#中3数学#数Ⅰ#2次関数#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
ユキさんたちのクラスでは、数学の授業で関数のグラフについてコンピュータを使って学習しています。次の問いに答えなさい。
問1 先生が提示した画面1には、関数$y=x^{ 2 }$のグラフと、このグラフ上の2点A、Bを通る直線が表示されています。点Aの$x$座標は3、点Bの$x$座標は-2です。点Oは原点とします。
ユキさんは、画面1を見て、2点A、Bを通る直線の式を求めたいと考え、求め方について、次のような見通しを立てています。

ユキさんの見通し
2点A、Bを通る直線の式を求めるには、2点A、Bの座標がわかれば良い。

次の(1)、(2)に答えなさい。
(1)点Aの$y$座標を求めなさい。
(2)ユキさんの見通しを用いて、2点A、Bを通る直線の式を求めなさい。

問2 △PQRが直角二等辺三角形になる時の$t$の値を求めなさい。

先生が提示した画面2には2つの関数$y=2x^{ 2 }$・・・①,$y=\frac{1}{2}x^{ 2 }$・・・②のグラフが表示されています。①のグラフ上に点Pがあり、点Pの$x$座標は$t$です。点Qは、点Pと$y$軸について対称な点です。また、点Rは、点Pを通り、$y$軸に平行な直線と②のグラフとの交点です。点Oは原点とし、$t$>0とします。

ユキさんたちは、点Pを①のグラフ上で動かすことで、△PQRがどのように変化するかについて、話し合っています。
ユキさん「点Pを動かすと、点Qと点Rも同時に動くね。」
ルイさん「このとき、△PQRはいつでも直角三角形になるね。」
ユキさん「・・・あれ?△PQRが直角に等辺三角形に見えるときがあるよ?」
ルイさん「本当に直角二等辺三角形になるときがあるのかな。」
ユキさん「じゃあ、△PQRが直角二等辺三角形になるときの点Pの座標を求めてみようか。」
ルイさん「点Pの座標を求めるには、$t$の値がわかればいいね。」

△PQRが直角二等辺三角形になるときの$t$の値を求めなさい。
この動画を見る 

よく間違える二次関数の変域

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$-1\leqq x\leqq 2$のとき、$x^2$の範囲を求めよ。
この動画を見る 

2021 愛知高校 図形 B

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
斜線部の面積は?
*図は動画内参照

2021愛知高等学校
この動画を見る 

【数Ⅰ】【図形と計量】三角比の値域 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式のとりうる値の範囲を求めよ。(1)~(4)では$0°\leqq\theta\leqq 180°$とする。
(1) $sin\theta+2$ (2) $2\cos\theta$ (3) $2\sin\theta-1$ (4) $-3\cos\theta+1$ (5) $2\tan\theta+1$ ($0°\leqq0\leqq 60°$)
(6)$\tan\theta+1$ ($30°\leqq 0\lt 90°$)
この動画を見る 

福田のわかった数学〜高校1年生023〜連立2次不等式の整数解の個数

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 連立2次不等式
$\left\{\begin{array}{1}
x^2-2x-3 \gt 0\\
x^2-(a+1)x+a \lt 0\\
\end{array}\right.$
をともに満たす整数がただ1つとなる
ようなaの値の範囲を求めよ。
この動画を見る 
PAGE TOP