【信じて突き進もう!】連立方程式:ラ・サール高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【信じて突き進もう!】連立方程式:ラ・サール高等学校~全国入試問題解法

問題文全文(内容文):
正の数$x,y,z$が,$x=y(z+2)=(x+y)z$を満たしているとき
$z$の値を求めよ.また,$\dfrac{y}{x}$の値を求めよ.

ラサール高校過去問
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
正の数$x,y,z$が,$x=y(z+2)=(x+y)z$を満たしているとき
$z$の値を求めよ.また,$\dfrac{y}{x}$の値を求めよ.

ラサール高校過去問
投稿日:2022.07.16

<関連動画>

長方形の分割 愛知県(改) 令和4年度 2022 入試問題100題解説88問目!

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 数学を数楽に
問題文全文(内容文):
長方形ABCD=80㎠
△DEC=?
*図は動画内参照

2022愛知県(改)
この動画を見る 

【順序立てて考える力!】関数:早稲田大学系属早稲田実業学校高等部~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$y$は$x+2$に反比例し,$z+1$は$y$に比例する.
$x=4$のとき,$z=15$である.
$x=-6$のとき,$z$の値を求めよ.

早稲田実業高等部過去問
この動画を見る 

【高校受験対策】数学-文章題5

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・文章題5


右の記事は、ある中学校の保健委員会が発行した「保健だより」の一部である。
品数が「3品以上」と答えた生徒が、1、2年生あわせて149人であったとき、 朝食を「食べた」と答えた1年生、2年生はそれぞれ何人であったか、方程式をつくって求めなさい。なお途中の計算も書くこと。


A市の家庭における1か月あたりの水道料金は、 (水道料金)=(基本料金)+(水の使用量に応じた使用料金)となっています。
使用量が$30m^3$までは、$1m^3$あたりの使用料金が一定であり、使用量が$30m^3$を超えた分の$1m^3$があたりの使用料金は、 使用量が30$m^3$までの$1m^3$あたりの使用料金より80円高くなっています。
A市のある家庭における1ヶ月の水道料金は、使用量が$32m^3$のときは5310円、使用量が$28m^3$のときは4710円でした。 使用量が$30m^3$までの$1m^3$あたりの使用料金を求めなさい。
この動画を見る 

【高校受験対策/数学】死守-96

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#2次方程式#比例・反比例#確率#2次関数#相似な図形#円#文字と式#平面図形#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守96

①$7+2×(-6)$を計算せよ。
②$3(2a+b)-2(4a-5b)$を計算せよ。
③$\frac{14}{\sqrt2}-\sqrt32$を計算せよ。
④2次方程式$(x+6)(x-5)=9x-10$を解け。
⑤関数$y=\frac{1}{2}x^2$について、$x$の変域が$-4 \leqq x\leqq2$のとき、$y$の変域を求めよ。
⑥関数$y=\frac{ 6 }{ x }$のグラフをかけ。
⑦$△ABC$において、$\angle A=90°,AB=6cm,BC=10cm$のとき、辺$AC$の長さを求めよ。

⑧4枚の硬質A、B、C、Dを同時に投げるとき、少なくとも1枚は表が出る確率を求めよ。
ただし、表と裏が出ることは同様に確からしいとする。

⑨右図のように、円$0$の円周上に3点、$A,B,C$を$AB=AC$となるようにとり、$△ABC$をつくる。
線分$BO$を延長した直線と線分$AC$と交点を$D$とする。
$\angle BAC=48°$のとき$\angle ADB$の大きさを求めよ。
この動画を見る 

【テスト対策・中2】3章-5

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図のように、2点$A(-3,0)、C\left(0,\dfrac{15}{4}\right)$を通る直線$\ell$と
点$B$を通る直線$m:y = - x + 6$がある。
直線$\ell.m$の交点を$P$とするとき、次の問いに答えなさい。

①直線$\ell$の式を求めよ。

②点$P$の座標を求めよ。

③$△PAB$の面積を求めよ。

④点$P$を通り、$△PAB$の面積を2等分する直線の式を求めよ。

図は動画内参照
この動画を見る 
PAGE TOP