【小学校の学習範囲から始まって】整数:市川高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【小学校の学習範囲から始まって】整数:市川高等学校~全国入試問題解法

問題文全文(内容文):
$A-2B-2G+L=2021$のとき,自然数の組$(A,B)$をすべて求めよ.
※$G$は1でない自然数とする.

市川高校過去問
単元: #数学(中学生)#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$A-2B-2G+L=2021$のとき,自然数の組$(A,B)$をすべて求めよ.
※$G$は1でない自然数とする.

市川高校過去問
投稿日:2022.06.22

<関連動画>

福田の1.5倍速演習〜合格する重要問題036〜京都大学2017年度文系第2問〜特定の素因数を持つ整数の個数

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次の問いに答えよ。ただし、$0.3010 \lt \log_{10}2 \lt 0.3011$
であることは用いてよい。
(1)100桁以下の自然数で、2以下の素因数を持たないものの個数を求めよ。
(2)100桁の自然数で、2と5以外の素因巣を持たないものの個数を求めよ。

2017京都大学文系過去問
この動画を見る 

図形問題にみえて実は〇〇問題 慶應義塾高校

アイキャッチ画像
単元: #数Ⅰ#数A#図形と計量#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
nは3以上の整数とする。
正n角形の1つの内角をx°とするときxの値が整数となる正n角形は何個?

慶應義塾高等学校
この動画を見る 

海外数学オリンピック 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p^3+q^3-3pq+1$が素数となる自然数$(p,q)$の組をすべて求めよ.

海外数学オリンピック過去問
この動画を見る 

負の数の商と余り

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
-7を3で割ったときの商と余りは?
この動画を見る 

福田の数学〜慶應義塾大学2024年理工学部第1問(1)〜6番目に大きい約数と6乗根に最も近い自然数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}$(1)2024の約数の中で1番大きいものは2024だが,6番目に大きいものは$\boxed{ア}$である.
2024の6乗根に最も近い自然数は$\boxed{イ}$である.

2024慶應義塾大学理工過去問
この動画を見る 
PAGE TOP