【共通テスト】数IAを最短で50点にする方法はこれです。 - 質問解決D.B.(データベース)

【共通テスト】数IAを最短で50点にする方法はこれです。

問題文全文(内容文):
【共通テスト】数IAを最短で50点にする方法紹介動画です
単元: #センター試験・共通テスト関連#共通テスト#その他#勉強法#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共通テスト】数IAを最短で50点にする方法紹介動画です
投稿日:2023.09.09

<関連動画>

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[2]。対数の大小判定の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
[2]a,bは正の実数であり、$a\neq 1,b\neq 1$を満たすとする。太郎さんは
$\log_ab$と$\log_ba$の大小関係を調べることにした。
(1)太郎さんは次のような考察をした。
まず、$\log_39=\boxed{\ \ ス\ \ }, \log_93=\frac{1}{\boxed{\ \ ス\ \ }}$である、この場合

$\log_39 \gt \log_93$
が成り立つ。
一方、$\log_{\frac{1}{4}}\boxed{\ \ セ\ \ }=-\frac{3}{2},\log_{\boxed{セ}}\frac{1}{4}=-\frac{2}{3}$である。この場合

$\log_{\frac{1}{4}}\boxed{\ \ セ\ \ } \lt \log_{\boxed{セ}}\frac{1}{4}$
が成り立つ。
(2)ここで
$\log_ab=t \ldots①$
とおく。
(1)の考察をもとにして、太郎さんは次の式が成り立つと推測し、
それが正しいことを確かめることにした。
$\log_ba=\frac{1}{t} \ldots②$
①により、$\boxed{\ \ ソ\ \ }$である。このことにより$\boxed{\ \ タ\ \ }$が得られ、②が
成り立つことが確かめられる。

$\boxed{\ \ ソ\ \ }$の解答群
$⓪a^k=t ①a^t=b ②b^a=t$
$③b^t=a ④t^a=b ⑤t^b=a$

$\boxed{\ \ タ\ \ }$の解答群
$⓪a=t^{\frac{1}{b}} ①a=b^{\frac{1}{t}} ②b=t^{\frac{1}{a}}$
$③b=a^{\frac{1}{t}} ④t=b^{\frac{1}{a}} ⑤t=a^{\frac{1}{b}}$

(3)次に、太郎さんは(2)の考察をもとにして
$t \gt \frac{1}{t} \ldots③$
を満たす実数$t(t\neq 0)$の値の範囲を求めた。
太郎さんの考察
$t \gt 0$ならば、③の両辺にtを掛けることにより、$t^2 \gt 1$を得る。
このような$t(t \gt 0)$の値の範囲は$1 \lt t$である。
$t \lt 0$ならば、③の両辺にtを掛けることにより、$t^2 \lt 1$を得る。
このような$t(t \lt 0)$の値の範囲は$-1 \lt t \lt 0$である。

この考察により、③を満たす$t(t\neq 0)$の値の範囲は
$-1 \lt t \lt 0, 1 \lt t$
であることが分かる。
ここで、aの値を一つ定めたとき、不等式
$\log_ab \gt \log_ba \ldots④$
を満たす実数$b(b \gt 0, b\neq 1)$の値の範囲について考える。
④を満たすbの値の範囲は$a \gt 1$のときは$\boxed{\ \ チ\ \ }$であり、
$0 \lt a \lt 1$のときは$\boxed{\ \ ツ\ \ }$である。

$\boxed{\ \ チ\ \ }$の解答群
$⓪0 \lt b \lt \frac{1}{a}, 1 \lt b \lt a   ①0 \lt b \lt \frac{1}{a}, a \lt b$
$②\frac{1}{a} \lt b \lt 1, 1 \lt b \lt a   ③\frac{1}{a} \lt b \lt 1, a \lt b$

$\boxed{\ \ ツ\ \ }$の解答群
$⓪0 \lt b \lt a, 1 \lt b \lt \frac{1}{a}   ①0 \lt b \lt a, \frac{1}{a} \lt b$
$②a \lt b \lt 1, 1 \lt b \lt \frac{1}{a}   ③a \lt b \lt 1, \frac{1}{a} \lt b$

(4)$p=\frac{12}{13}, q=\frac{12}{11}, r=\frac{14}{13}$とする。
次の⓪~③のうち、正しいものは$\boxed{\ \ テ\ \ }$である。

$\boxed{\ \ テ\ \ }$の解答群
$⓪\log_pq \gt \log_qp$かつ$\log_pr \gt \log_rp$
$①\log_pq \gt \log_qp$かつ$\log_pr \lt \log_rp$
$②\log_pq \lt \log_qp$かつ$\log_pr \gt \log_rp$
$③\log_pq \lt \log_qp$かつ$\log_pr \lt \log_rp$

2022共通テスト数学過去問
この動画を見る 

【日本最速解答速報】共通テスト2023数学1A 第3問【今となっては過去問解説】

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 理数個別チャンネル
問題文全文(内容文):
共通テスト2023数学1A 第3問解説していきます.
この動画を見る 

2024共通テスト数学 あけましておめでとう

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整数lを3進数と4進数で表したら、ともに下ケタが012になった
最小のlを求めよ

2024共通テスト過去問
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学IA問題2[1]。2次関数の問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$[1] 陸上競技の短距離100m走では、100mを走るのに
かかる時間(以下、タイムと呼ぶ)は、1歩あたりの
進む距離(以下、ストライドと呼ぶ)と1秒当たりの歩数(以下、ピッチと呼ぶ)に関係がある。
ストライドとピッチはそれぞれ以下の式で与えられる。
ストライド $(m/歩) =\frac{100(m)}{100mを走るのにかかった歩数(歩)}$,

$ピッチ (歩/秒) =\frac{100m を走るのにかかった歩数(歩)}{タイム(秒)}$

ただし、100mを走るのにかかった歩数は、最後の1歩が
ゴールラインをまたぐこともあるので、
少数で 表される。以下、単位は必要のない限り省略する。
例えば、タイムが10.81で、そのときの歩数が48.5であったとき、
ストライドは$\frac{100}{48.5}$より約2.06、ピッチ は
$\frac{ 48.5 }{10.81}$ より約4.49である。

(1)ストライドをx、ピッチをzとおく。ピッチは1秒当たりの歩数、
ストライドは1歩あたりの進む距離
なので、1秒あたりの進む距離すなわち平均速度は、
xとzを用いて$\boxed{ア}(m/秒)$と表される。
これよりタイムと、ストライド、ピッチとの関係は$タイム=\frac{100}{\boxed{ア}}$ と
表されるので$\boxed{ア}$ が最大となるとき
にタイムが最もよくなる。ただし、タイムがよくなるとは、
タイムの値が小さくなることである。

$\boxed{ア}$の解答群
⓪ $x+z$ ①$z-x$ ②$xz$ ③$\frac{x+z}{2}$ ④$\frac{z-x}{2}$ ⑤$\frac{xz}{2}$

(2)太郎さんは、①に着目して、タイムが最もよくなるスライドと
ピッチを考えることにした。右に表は、太郎さんが練習で
100mを3回走った時のストライドとピッチのデータである。
また、ストライドとピッチにはそれぞれ限界がある。太郎さんの場合、
ストライドの最大値は2.40、ピッチの最大値は4.80である。
太郎さんは、上の表から、ストライドが0.05大きくなるとピッチが0.1小さくなるという
関係があると考えてピッチがストライドの1次関数として
表されると仮定した。このとき、ピッチzはストライドxを用いて
$z=\boxed{イウ}\ x+\frac{\boxed{エオ}}{5} \ldots②$ と表される。
②が太郎さんのストライドの最大値2.40とピッチの最大値4.80
まで成り立つと仮定すると、xの値の範囲は
$\boxed{カ}.\boxed{キク} \leqq x \leqq 2.40$

(3)$y=\boxed{ア}$とおく。②を$y=\boxed{ア}$に代入することにより、
yをxの関数としてあらわすことができる。太郎さんのタイムが最もよくなるストライド
とピッチを求めるためには、$\boxed{カ}.\boxed{キク} \leqq x \leqq 2.40$の範囲で
yの値を最大にするxの値を見つければよい。このときyの値が最大になるのは
$x=\boxed{ケ}.\boxed{コサ}$のときである。よって、太郎さんのタイムが最もよくなるのは、
ストライドが$\boxed{ケ}.\boxed{コサ}$のときであり、このとき、ピッチは$\boxed{シ}.\boxed{スセ}$
である。また、このときの太郎さんのタイムは①により$\boxed{ソ}$である。

$\boxed{ソ}$の解答群
⓪9.68  ①9.97  ②10.09  ③10.33  ④10.42  ⑤10.55

2021共通テスト数学過去問
この動画を見る 

【センター試験2018年】出題予想!今年はコレが出る?!~当たればラッキー?!的中を出してきたシノハラの「ココ」がヤバい!~京大模試全国一位の勉強法【篠原好】

アイキャッチ画像
単元: #大学入試過去問(数学)#物理#化学#生物#センター試験・共通テスト関連#共通テスト#大学入試過去問(物理)#大学入試過去問(化学)#英語(高校生)#国語(高校生)#社会(高校生)#日本史#世界史#大学入試過去問(英語)#大学入試過去問(国語)#共通テスト#共通テスト(現代文)#大学入試過去問(生物)#共通テスト・センター試験#共通テスト(古文)#共通テスト#大学入試過去問・共通テスト・模試関連#大学入試過去問・共通テスト・模試関連#数学(高校生)#理科(高校生)#共通テスト
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
今年はコレが出る?!
「センター試験2018年」の出題予想です。
この動画を見る 
PAGE TOP