2023高校入試解説19問目 式の値 久留米大附設 - 質問解決D.B.(データベース)

2023高校入試解説19問目 式の値 久留米大附設

問題文全文(内容文):
\begin{eqnarray}
\left\{
\begin{array}{l}
x + y = 7 \\
x^2 + y^2 = 169
\end{array}
\right.
\end{eqnarray}
$(x-y)(x^2 -y^2) = ?$

2023久留米大学附設高等学校
単元: #数学(中学生)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
\begin{eqnarray}
\left\{
\begin{array}{l}
x + y = 7 \\
x^2 + y^2 = 169
\end{array}
\right.
\end{eqnarray}
$(x-y)(x^2 -y^2) = ?$

2023久留米大学附設高等学校
投稿日:2023.01.23

<関連動画>

【高校数学】数Ⅰ-20 1次不等式④(応用編)

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①不等式$3x-a \lt 2(5-x)$を満たすxのうちで最大整数が5であるとき、定数aの値の範囲は?

②とある店では500円で会員になることができ、会員は10%引きで買い物ができる。
この店で定価600円の品物を買うとき、会員になった方が合計金額が安くなるのは何個以上買うとき?
この動画を見る 

福田のおもしろ数学153〜分母に4つのルートが並ぶ式の有理化

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle\frac{1}{\sqrt 2+\sqrt 3+\sqrt 5+\sqrt 6}$ の分母を有理化せよ。
この動画を見る 

【数Ⅰ】【集合と論証】真偽の調べ方 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a,b$は実数とする。次の命題の真偽を求めよ。
(1)$ab=0$ならば$a^2+b^2=0$である。
(2)$a^2=4$ならば$|a+1|≧1$である。
(3)$ab$が有理数であるならば、$a,b$はともに有理数である。
(4)$a+b, ab$がともに有理数ならば、$a,b$はともに有理数である。

全体集合を$U$とし、条件$p,q$を満たす全体の集合を、それぞれ$P,Q$とする。
命題$\overline{p}⇒q$が真であるとき、$P,Q$について常に成り立つ事をすべて選べ。

①$P=Q$
②$Q⊂P$
③$\overline{Q}⊂P$
④$P⊂\overline{Q}$
⑤$P∪\overline{Q}=P$
⑥$P∪\overline{Q}=\overline{Q}$
⑦$P∩Q=\varnothing$
⑧$P∪Q=U$
この動画を見る 

因数分解 國学院久我山

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$4(2x+ \frac{y}{2})^2 - 4( \frac{x}{2} - 2y)^2$

國學院大學久我山高等学校
この動画を見る 

共通テスト2021年数学詳しい解説〜共通テスト2021年IA第1問〜2次関数、三角比

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第1問}$
[1]$c$を正の整数とする。$x$の2次方程式
$2x^2+(4c-3)x+2c^2-c-11=0$ $\cdots$①
について考える。

(1)$c=1$のとき、①のっ左辺を因数分解すると

$\left(\boxed{\ \ ア\ \ }\ x+\boxed{\ \ イ\ \ }\right)\left(x-\boxed{\ \ ウ\ \ }\right)$
であるから、①の解は

$x=-\displaystyle \frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ア\ \ }},\ \boxed{\ \ ウ\ \ }$

である。

(2)$c=2$のとき、①の解は

$x=\displaystyle \frac{-\boxed{\ \ エ\ \ }\pm\sqrt{\boxed{\ \ オカ\ \ }}}{\boxed{\ \ キ\ \ }}$

であり、大きい方の解を$\alpha$とすると

$\displaystyle \frac{5}{\alpha}=\displaystyle \frac{\boxed{\ \ ク\ \ }\pm\sqrt{\boxed{\ \ ケコ\ \ }}}{\boxed{\ \ サ\ \ }}$

である。また、$m \lt \displaystyle \frac{5}{\alpha} \lt m+1$を満たす整数$m$は$\boxed{\ \ シ\ \ }$である。

(3)太郎さんと花子さんは、①の解について考察している。

太郎:①の解は$c$の値によって、ともに有理数である場合も
あれば、ともに無理数である場合もあるね。$c$がどの
ような値のときに、解は有理数になるのかな。
花子:2次方程式の解の公式の根号の中に着目すれば
いいんじゃないかな。

①の解が異なる二つの有理数であるような正の整数$c$の個数は
$\boxed{\ \ ス\ \ }$個である。

[2]右の図のように(※動画参照)、$\triangle ABC$の外側に辺$AB,BC,CA$
をそれぞれ1辺とする正方形$ADEB,BFGC,CHIA$をかき、
2点$E$と$F,G$と$H,I$と$D$をそれぞれ線分で結んだ図形を考える。
以下において
$BC=a, CA=b, AB=c$
$\angle CAB=A, \angle ABC=B, \angle BCA=C$
とする。

(1)$b=6,c=5,\cos A=\displaystyle \frac{3}{5}$のとき、$\sin A=\displaystyle \frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソ\ \ }}$であり、
$\triangle ABC$の面積は$\boxed{\ \ タチ\ \ }、\triangle AID$の面積は$\boxed{\ \ ツテ\ \ }$である。


(2)正方形$BFGC, CHIA, ADEB$の面積をそれぞれ$S_1,S_2,S_3$とする。
このとき、$S_1-S_2-S_3$は
・$0° \lt A \lt 90°$のとき、$\boxed{\boxed{\ \ ト\ \ }}$。
・$A=90°$のとき、$\boxed{\boxed{\ \ ナ\ \ }}$。
・$90° \lt A \lt 180°$のとき、$\boxed{\boxed{\ \ ニ\ \ }}$。


$\boxed{\boxed{\ \ ト\ \ }}~\boxed{\boxed{\ \ ニ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$0$である
①正の値である
②負の値である
③正の値も負の値もとる

(3)$\triangle AID,\triangle BEF,\triangle CGH$の面積をそれぞれ$T_1,T_2,T_3$とする。
このとき、$\boxed{\boxed{\ \ ヌ\ \ }}$である。

$\boxed{\boxed{\ \ ヌ\ \ }}$の解答群
⓪$a \lt b \lt c$ならば、$T_1 \gt T_2 \gt T_3$
①$a \lt b \lt c$ならば、$T_1 \lt T_2 \lt T_3$
②$A$が鈍角ならば、$T_1 \lt T_2かつT_2 \lt T_3$
③$a,b,c$の値に関係なく、$T_1=T_2=T_3$

(4)$\triangle ABC,\triangle AID,\triangle BEF,\triangle CGH$のうち、外接円の半径が最も小さい
ものを求める。
$0° \lt A \lt 90°$のとき、$ID \boxed{\boxed{\ \ ネ\ \ }}BC$であり
($\triangle AID$の外接円の半径)$\boxed{\boxed{\ \ ノ\ \ }}$($\triangle ABC$の外接円の半径)

であるから、外接円の半径が最も小さい三角形は
・$0° \lt A \lt B \lt C \lt 90°$のとき、$\boxed{\boxed{\ \ ハ\ \ }}$である。
・$0° \lt A \lt B \lt 90° \lt $Cのとき、$\boxed{\boxed{\ \ ヒ\ \ }}$である。

$\boxed{\boxed{\ \ ネ\ \ }},\boxed{\boxed{\ \ ノ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$\lt$ ①$=$ ②$\gt$

$\boxed{\boxed{\ \ ハ\ \ }},\boxed{\boxed{\ \ ヒ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$\triangle ABC$ ①$\triangle AID$ ②$\triangle BEF$ ③$\triangle CGH$

2021共通テスト過去問
この動画を見る 
PAGE TOP