円と長方形 - 質問解決D.B.(データベース)

円と長方形

問題文全文(内容文):
△GHI=?
*図は動画内参照
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
△GHI=?
*図は動画内参照
投稿日:2022.11.27

<関連動画>

福田の数学〜慶應義塾大学2022年環境情報学部第5問〜ジャンケンで勝者1人を決める確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{5}}\ 複数人でじゃんけんを何回か行い勝ち残った1人を決めることを考える。\hspace{70pt}\\
最初は全員がじゃんけんに参加して始める。それぞれのじゃんけんでは、\\
そのじゃんけんの参加者がそれぞれグー、チョキ、パーのどれかを出し、\\
もし誰か1人が他の全員に買った場合にはその1人が商社となりじゃんけん\\
はそこで終了する。そうでない場合、全員が同じ手を出したか、グー、チョキ、\\
パーのそれぞれを誰かが出した場合には'あいこ'となり、そのじゃんけんの参加者全員が\\
次のじゃんけんに進む。上記以外で、2つの手に分かれた場合には、\\
負けた手を出した人を除いて勝った手を出した人だけが次のじゃんけんに進む。\\
このように、じゃんけんを繰り返し行い、1人の勝者が決まるまで続けるものとする。\\
ただし、じゃんけんの参加者全員、グー、チョキ、パーのどれかを等しい確率\\
で毎回ランダムに出すものとする。また通常のじゃんけんのように\\
グーはチョキに勝ち、チョキはパーに勝ち、パーはグーに勝つものとする。\\
\\
(1)3人でじゃんけんを複数回行い1人の勝者を決める場合、1回目のじゃんけんで\\
勝者が決まる確率は\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}\ であり、\\
ちょうど2回目のじゃんけんで勝者が決まる確率は\frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}\ であり、\\
ちょうど3回目のじゃんけんで勝者が決まる確率は\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}\ である。\\
\\
(2)4人でじゃんけんを複数回行い1人の勝者を決める場合、1回目のじゃんけんで\\
勝者が決まる確率は\frac{\boxed{\ \ スセソ\ \ }}{\boxed{\ \ タチツ\ \ }}\ であり、\\
ちょうど2回目のじゃんけんで勝者が決まる確率は\frac{\boxed{\ \ テトナ\ \ }}{\boxed{\ \ ニヌネ\ \ }}\ である。
\end{eqnarray}

2022慶應義塾大学環境情報学部過去問
この動画を見る 

福田の数学・入試問題解説〜東北大学2022年理系第4問〜2つの直線に接し互いに外接する2つの円の性質

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{4}}}\ xy平面の第1象限内において、直線l:y=mx (m \gt 0)とx軸の両方に\\
接している半径aの円をCとし、円Cの中心を通る直線y=tx (t \gt 0)を考える。\\
また、直線lとx軸、および、円Cの全てにそれぞれ1点で接する円の半径をbとする。\\
ただし、b \gt aとする。\\
(1)mを用いてtを表せ。\\
(2)tを用いて\frac{b}{a}を表せ。\\
(3)極限値\lim_{m \to +0}\frac{1}{m}(\frac{b}{a}-1)を求めよ。
\end{eqnarray}

2022東北大学理系過去問
この動画を見る 

不定方程式

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
整数$(x,y)$を求めよ.
$x^2y+7x-2xy=15$

この動画を見る 

【中学数学・数A】中高一貫校問題集3(論理・確率編)61:場合の数と確率:場合の数:硬貨の選び方 5円玉4枚、10円玉2枚、50円玉1枚、100円玉2枚の一部、または全部使って支払うことができる金額は何通りか求めよう。

アイキャッチ画像
単元: #算数(中学受験)#数A#場合の数と確率#場合の数#場合の数#場合の数#数学(高校生)
教材: #TK数学#TK数学問題集3(論理・確率編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
5円玉4枚、10円玉2枚、50円玉1枚、100円玉2枚の一部、または全部使って支払うことができる金額は何通りか求めよう。
この動画を見る 

座標平面上の円 高校入試

アイキャッチ画像
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\overparen{AB}$=?
*図は動画内参照
この動画を見る 
PAGE TOP