周角と円に内接する四角形・円と接線・接弦定理
![](https://kaiketsu-db.net/wp-content/uploads/2021/11/112-book-morph-outline.gif)
【保存版】相加平均・相乗平均の覚え方
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/09/c6223d125c55cec0e1fe16b2ab7eb2f1.jpeg)
単元:
#数Ⅱ#図形の性質#式と証明#周角と円に内接する四角形・円と接線・接弦定理#恒等式・等式・不等式の証明#その他#数学(高校生)#参考書紹介
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
【保存版】相加平均・相乗平均の覚え方
※問題は動画内参照
この動画を見る
【保存版】相加平均・相乗平均の覚え方
※問題は動画内参照
【高校数学】円と直線が接するときの2パターンの考え方【数学のコツ】
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/08/45f7e9898b9c38b207a8af763e40eb62.jpeg)
単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の円と直線が接するときの$k$の値と接点の座標を求めよ。
$x^2+y^2=4, y=x+k$
この動画を見る
次の円と直線が接するときの$k$の値と接点の座標を求めよ。
$x^2+y^2=4, y=x+k$
接線の長さ
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/05/e695d9139ca0eddef6be6c9344803f22.jpeg)
福田の数学〜早稲田大学2024年人間科学部第5問〜円の性質と切り取られる弦の長さ
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/11/0a79a1a41716fd77682cd62c8bb8b56d.jpeg)
単元:
#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 2点A(-$\sqrt 2$-$\sqrt 6$, $\sqrt 2$-$\sqrt 6$), B($\sqrt 2$+$\sqrt 6$, $\sqrt 2$-$\sqrt 6$)と原点O(0, 0)について、$\theta$=$\angle\textrm{AOB}$ とするとき、$\theta$=$\displaystyle\frac{\boxed{ナ}}{\boxed{ニ}}\pi$ である。ただし、0≦$\theta$≦$\pi$ とする。さらに円$x^2$+$y^2$-$2x$-$10y$+22=0 を$C$とする。円$C$上の点P, Qは
$\angle\textrm{APB}$=$\angle\textrm{AQB}$=$\displaystyle\frac{5}{12}\pi$
を満たす点とする。このとき、PQ=$\displaystyle\boxed{ヌ}\sqrt{\frac{\boxed{\ \ ネ\ \ }}{\boxed{\ \ ノ\ \ }}}$ である。
この動画を見る
$\Large\boxed{5}$ 2点A(-$\sqrt 2$-$\sqrt 6$, $\sqrt 2$-$\sqrt 6$), B($\sqrt 2$+$\sqrt 6$, $\sqrt 2$-$\sqrt 6$)と原点O(0, 0)について、$\theta$=$\angle\textrm{AOB}$ とするとき、$\theta$=$\displaystyle\frac{\boxed{ナ}}{\boxed{ニ}}\pi$ である。ただし、0≦$\theta$≦$\pi$ とする。さらに円$x^2$+$y^2$-$2x$-$10y$+22=0 を$C$とする。円$C$上の点P, Qは
$\angle\textrm{APB}$=$\angle\textrm{AQB}$=$\displaystyle\frac{5}{12}\pi$
を満たす点とする。このとき、PQ=$\displaystyle\boxed{ヌ}\sqrt{\frac{\boxed{\ \ ネ\ \ }}{\boxed{\ \ ノ\ \ }}}$ である。
円と面積比 嵯峨野高校2024
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/02/e43a6fa3c1a174ae6bc984b1a1ad2d8f.jpeg)
単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
△APD=△BPC×5
PC=?
*図は動画内参照
2024嵯峨野高等学校
この動画を見る
△APD=△BPC×5
PC=?
*図は動画内参照
2024嵯峨野高等学校
円周角の和 2024早稲田本庄
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/05/e20d365556559394c3d6a2ab10c5639c.jpeg)
単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
角の和○+✖+△+▢をaで表せ
*図は動画内参照
2024早稲田大学本庄高等学院
この動画を見る
角の和○+✖+△+▢をaで表せ
*図は動画内参照
2024早稲田大学本庄高等学院
四角形の面積 立教新座2024
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/05/6a5d62dddbbed7fa65e43676e850f3ae.jpeg)
単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
四角形の面積は?
*図は動画内参照
2024立教新座高等学校
この動画を見る
四角形の面積は?
*図は動画内参照
2024立教新座高等学校
円の半径=❓
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/05/6a05a10df9b6045607d592a9530c189b.jpeg)
福田のおもしろ数学033〜これが東大の入試問題だ!〜6個の円がおおう範囲の面積
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/01/d4929e8de4c17474c36fd6e66db23211.jpeg)
単元:
#数A#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
これが東大の入試問題だ!
半径1の円6個で覆う太線で囲まれた部分の面積を求めよ
図は動画内参照
東京大学過去問
この動画を見る
これが東大の入試問題だ!
半径1の円6個で覆う太線で囲まれた部分の面積を求めよ
図は動画内参照
東京大学過去問
福田のおもしろ数学026〜1分でできたら天才〜半円に内接し互いに外接する3つの円
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/01/c490486efe9275e88447082bc3f2e004.jpeg)
単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
中学生でも解ける!?
図のように外接する円で、xの長さを求めよ
図は動画内参照
この動画を見る
中学生でも解ける!?
図のように外接する円で、xの長さを求めよ
図は動画内参照
福田のおもしろ数学025〜10秒でできたら天才〜円に内接する二等辺三角形と線分の長さ
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/01/6ed414e9f1bda540e6f259999ee151a4.jpeg)
単元:
#数学(中学生)#中3数学#数A#図形の性質#円#三角形の辺の比(内分・外分・二等分線)#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
小学生でも解ける!?
xを求めよ
図は動画内参照
この動画を見る
小学生でも解ける!?
xを求めよ
図は動画内参照
福田のおもしろ数学008〜正しいフォームを身につけよう〜外接する2円と共通接線に接する正方形
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/03/3ce02debcfda22ce6671228e73772515.jpeg)
単元:
#数学(中学生)#中3数学#数A#図形の性質#三平方の定理#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
次の緑の円の半径と正方形の一片の長さを求めよ
※図は動画内参照
この動画を見る
次の緑の円の半径と正方形の一片の長さを求めよ
※図は動画内参照
これだけでわかるの?面積が大きいのはどっち?
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/06/79967beda0eb19c3d76790c497e672f5.jpeg)
単元:
#数Ⅰ#数A#図形の性質#図形と計量#三角比(三角比・拡張・相互関係・単位円)#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
面積が大きいのは長方形 or 正方形
*図は動画内参照
この動画を見る
面積が大きいのは長方形 or 正方形
*図は動画内参照
福田の数学〜三角比の基本の復習にどうぞ〜慶應義塾大学2023年経済学部第1問(1)〜三角形と外接円内接円の半径
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/04/2e1afa58ca51508b59910c4fa0e1f0a5.jpeg)
単元:
#数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
(1)$\triangle ABC$において
$sinA:sinB:sinC=3:7:8$
が成り立つとき、ある性の実数kを用いて
$a=\fbox{ア}k,b=\fbox{イ}k,c=\fbox{ウ}k$
と表すことができるので、この三角形の最も大きい角の余弦の値は$-\dfrac{\fbox{エ}}{\fbox{オ}}$であり、正弦の値は$-\fbox{カ}\sqrt{\fbox{キ}}$である。さらに$\triangle ABC$の面積が$54\sqrt{3}$であるとき、$k=\fbox{ク}$となるので、この三角形の外接円の半径は$\fbox{ケ}\sqrt{\fbox{コ}}$であり、内接円の半径は$\fbox{サ}\sqrt{\fbox{シ}}$である。
2023慶應義塾大学経済学部過去問
この動画を見る
(1)$\triangle ABC$において
$sinA:sinB:sinC=3:7:8$
が成り立つとき、ある性の実数kを用いて
$a=\fbox{ア}k,b=\fbox{イ}k,c=\fbox{ウ}k$
と表すことができるので、この三角形の最も大きい角の余弦の値は$-\dfrac{\fbox{エ}}{\fbox{オ}}$であり、正弦の値は$-\fbox{カ}\sqrt{\fbox{キ}}$である。さらに$\triangle ABC$の面積が$54\sqrt{3}$であるとき、$k=\fbox{ク}$となるので、この三角形の外接円の半径は$\fbox{ケ}\sqrt{\fbox{コ}}$であり、内接円の半径は$\fbox{サ}\sqrt{\fbox{シ}}$である。
2023慶應義塾大学経済学部過去問
数学どうにかしたい人へ
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/06/3e16e3091611b7b3d402e9ae8e2b959d.jpeg)
単元:
#数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#式と証明#複素数と方程式#平面上のベクトル#空間ベクトル#平面上の曲線#複素数平面#図形と計量#データの分析#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#データの分析#整数の性質#場合の数#確率#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#図形と方程式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#円と方程式#軌跡と領域#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数列#確率分布と統計的な推測#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数列とその和(等差・等比・階差・Σ)#漸化式#数学的帰納法#確率分布#統計的な推測#関数と極限#微分とその応用#積分とその応用#2次曲線#複素数平面#図形への応用#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#微分法#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分#定積分#面積・体積・長さ・速度#空間における垂直と平行と多面体(オイラーの法則)#不定積分・定積分#面積、体積#媒介変数表示と極座標#速度と近似式#数学(高校生)#数B#数C#数Ⅲ
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
数学が共通テストのみの人の勉強法紹介動画です
この動画を見る
数学が共通テストのみの人の勉強法紹介動画です
福田の数学〜早稲田大学2023年教育学部第1問(1)〜外から引いた接線と三角形の面積の最大
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/09/6be7d87098cdd1186a04becb784f93d2.jpeg)
単元:
#数A#大学入試過去問(数学)#図形の性質#三角形の辺の比(内分・外分・二等分線)#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)0<$b$<100 を満たす実数$b$に対し、点(10,$b$)から放物線$C$:$y$=$x^2$に相異なる2本の接線を引き、この2本の接線の$C$における接点をそれぞれ$P_1$, $P_2$とする。実数$b$が0<$b$<100の範囲で動くとき、3角形$OP_1P_2$の面積の最大値を求めよ。ただし、Oは原点を表す。
この動画を見る
$\Large\boxed{1}$ (1)0<$b$<100 を満たす実数$b$に対し、点(10,$b$)から放物線$C$:$y$=$x^2$に相異なる2本の接線を引き、この2本の接線の$C$における接点をそれぞれ$P_1$, $P_2$とする。実数$b$が0<$b$<100の範囲で動くとき、3角形$OP_1P_2$の面積の最大値を求めよ。ただし、Oは原点を表す。
最後の最後になって閃く。そして若干の後悔。円。
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/06/704af1dedb5a4a7f142346e52289ba81.jpeg)
単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
AB=6のとき赤の斜線部の面積は?
*図は動画内参照
この動画を見る
AB=6のとき赤の斜線部の面積は?
*図は動画内参照
外接四角形
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/06/68715c4cd0ac6d64103cea115ddf398d.jpeg)
単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
対角線ACは円Oの中心を通っている
半径を求めよ
*図は動画内参照
この動画を見る
対角線ACは円Oの中心を通っている
半径を求めよ
*図は動画内参照
福田の数学〜青山学院大学2023年理工学部第3問〜放物線上の4点で作る四角形の面積の最大
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/09/16ebcf02e3e45ce01019ad35a715218d.jpeg)
単元:
#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 点Oを原点とするxy平面上の放物線
$y$=$-x^2$+$4x$
を$C$とする。また、放物線$C$上に点A(4,0), P($p$, $-p^2+4p$), Q($q$, $-q^2+4q$)をとる。ただし、0<$p$<$q$<4 とする。
(1)放物線$C$の接線のうち、直線APと傾きが等しいものを$l$とする。接線$l$の方程式を求めよ。
(2)点Pを固定する。点Qが$p$<$q$<4 を満たしながら動くとき、四角形OAQPの面積の最大値を$p$を用いて表せ。
(3)(2)で求めた四角形OAQPの面積の最大値を$S(p)$とおく。0<$p$<4 のとき、
関数$S(p)$の最大値を求めよ。
この動画を見る
$\Large\boxed{3}$ 点Oを原点とするxy平面上の放物線
$y$=$-x^2$+$4x$
を$C$とする。また、放物線$C$上に点A(4,0), P($p$, $-p^2+4p$), Q($q$, $-q^2+4q$)をとる。ただし、0<$p$<$q$<4 とする。
(1)放物線$C$の接線のうち、直線APと傾きが等しいものを$l$とする。接線$l$の方程式を求めよ。
(2)点Pを固定する。点Qが$p$<$q$<4 を満たしながら動くとき、四角形OAQPの面積の最大値を$p$を用いて表せ。
(3)(2)で求めた四角形OAQPの面積の最大値を$S(p)$とおく。0<$p$<4 のとき、
関数$S(p)$の最大値を求めよ。
二等辺三角形の内接円の半径 3通りで解説 日大三
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/06/5de690d313fad25692d7de13f153ca59.jpeg)
単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
内接円の半径=?
*図は動画内参照
日本大学第三高等学校
この動画を見る
内接円の半径=?
*図は動画内参照
日本大学第三高等学校
内接円の半径 広陵(広島県)
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/06/e80d6ca657ab6f0a63965a01e08afda4.jpeg)
パックン 宇部鴻城(山口)
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/06/72d432d526e7a20edd90762f6c005850.jpeg)
単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
斜線部の面積=40π
小さい円の半径=?
*図は動画内参照
宇部鴻城高等学校
この動画を見る
斜線部の面積=40π
小さい円の半径=?
*図は動画内参照
宇部鴻城高等学校
引けるかな?気づけるかな?円の面積 早稲田高等学院
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/06/748f2e3a60111821901d5f939179f1d9.jpeg)
単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
AB=BC=6
円Oの面積=?
*図は動画内参照
早稲田大学 高等学院
この動画を見る
AB=BC=6
円Oの面積=?
*図は動画内参照
早稲田大学 高等学院
気付けば一瞬!!正方形と円
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/06/d4c1b1c4898c98bf3b9d06cb4c62c522.jpeg)
単元:
#数Ⅰ#数A#図形の性質#図形と計量#三角比(三角比・拡張・相互関係・単位円)#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
△BODの面積は?
*図は動画内参照
この動画を見る
△BODの面積は?
*図は動画内参照
正方形と接する4つの半円
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/06/e91b22e9dbe5f772bd7ed2ea6c29730d.jpeg)
単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
半径が等しい半円の4コ
$\angle AED =?$
*図は動画内参照
この動画を見る
半径が等しい半円の4コ
$\angle AED =?$
*図は動画内参照
補助線引けるかな?
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/06/f7d06cff1ddb010bedc66022347547db.jpeg)
ベン図おかしくね?
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/05/7743c098e19a7053ab0124d148336408.jpeg)
単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
ベン図に違和感を持つ人に対しての動画に関して解説していきます.
この動画を見る
ベン図に違和感を持つ人に対しての動画に関して解説していきます.
円錐の展開図から体積を求める(高校受験数学)
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/06/78cbf9e8a6e2ad5ae9f002502c3d44e2.jpeg)
大学生が解けない小学生の問題
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/05/59f6e568641874c35c24ef131412d148.jpeg)
単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
大学生が解けない小学生の問題を解説していきいます.
この動画を見る
大学生が解けない小学生の問題を解説していきいます.
図形の性質 円の位置関係【TAKAHASHI名人がていねいに解説】
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2023/06/9a407e8b8f645efd332e656f8dabfb11.jpeg)
単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
空間内の異なる2つの直線$ℓ 、m$ と異なる2つの平面$\alpha,\beta$について,
次の記述は常に正しいか。
(1) $\ell⊥\alpha、m⊥\alpha$ならば、$ℓ⊥m$である。
(2) $\ell ⊥\alpha、m⊥\alpha$ならば、$\alpha //\beta$である。
(3) $\ell //\alpha、m//\alpha$ならば、$\ell //m$である。
(4) $\ell //\alpha、m⊥\alpha$ならば、$\ell$と並行で$m$と垂直な直線がある。
正六角柱を底面に
平行でない1つの平面で切ったものである。
六角形$ABCDEF$ について,
辺$AB$ と平行な辺を答えよ。
立方体について、次の問いに答えよ。
(1) 辺$BF$ と垂直な面をすべて答えよ。
(2) 平面 $BFHD$ と平行な辺をすべて答えよ。
(3) この立方体に,平行な位置関係にある面は何組あるか。
(4) 平面$ABGH$と垂直な面をすべて答えよ。
この動画を見る
空間内の異なる2つの直線$ℓ 、m$ と異なる2つの平面$\alpha,\beta$について,
次の記述は常に正しいか。
(1) $\ell⊥\alpha、m⊥\alpha$ならば、$ℓ⊥m$である。
(2) $\ell ⊥\alpha、m⊥\alpha$ならば、$\alpha //\beta$である。
(3) $\ell //\alpha、m//\alpha$ならば、$\ell //m$である。
(4) $\ell //\alpha、m⊥\alpha$ならば、$\ell$と並行で$m$と垂直な直線がある。
正六角柱を底面に
平行でない1つの平面で切ったものである。
六角形$ABCDEF$ について,
辺$AB$ と平行な辺を答えよ。
立方体について、次の問いに答えよ。
(1) 辺$BF$ と垂直な面をすべて答えよ。
(2) 平面 $BFHD$ と平行な辺をすべて答えよ。
(3) この立方体に,平行な位置関係にある面は何組あるか。
(4) 平面$ABGH$と垂直な面をすべて答えよ。