座標平面 円と接線 中央大杉並 - 質問解決D.B.(データベース)

座標平面 円と接線 中央大杉並

問題文全文(内容文):
y=ax
a=?
*図は動画内参照

中央大学杉並高等学校
単元: #数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
y=ax
a=?
*図は動画内参照

中央大学杉並高等学校
投稿日:2022.11.03

<関連動画>

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2^a+m^2=n^4$
$a,m,n$は自然数で,$m,n$は奇数であることを示せ.
この動画を見る 

【高校数学】n進法のかけ算割り算をどこよりも丁寧に 5-13【数学A】

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
この動画を見る 

整数をそのまま根号の左端に入れるだけ

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3\sqrt{375}=\sqrt{375}$
$9\sqrt{1125}=\sqrt{91125}$
のように$\boxed{A}$は整数,aは1ケタの整数
$a\sqrt{\boxed{A}}=\sqrt{a\boxed{A}}$となるものは他にあるか?

この動画を見る 

整数問題の基本

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$a,b,n$をすべて求めよ.
$2^a+3^b=n^2$
この動画を見る 

合同式の基本 灘中

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
各位の数が全て異なる$7$桁の$11$の倍数で最大なものを求めよ.

2011灘中(改)過去問
この動画を見る 
PAGE TOP