2021一橋(経済)後期 - 質問解決D.B.(データベース)

2021一橋(経済)後期

問題文全文(内容文):
$(sin x+1)(cos x+1)=k$の解が$0\leqq x\lt 2\pi$の範囲にちょうど2つある$k$を求めよ.

一橋(経済)過去問
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(sin x+1)(cos x+1)=k$の解が$0\leqq x\lt 2\pi$の範囲にちょうど2つある$k$を求めよ.

一橋(経済)過去問
投稿日:2021.11.26

<関連動画>

数検準1級2次過去問(1番 指数対数の不等式)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#式と証明#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#対数関数#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
1⃣
$2^xlog_2x+2^{x+2}-4log_2x-16 < 0$
をみたすxの値の範囲を求めよ。
この動画を見る 

【数Ⅱ】【微分法と積分法】方程式の解の個数8 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
曲線C:y=x³+3x²について、次の問いに答えよ。
(1)C上の点P(t,t³+3t)におけるCの接線が点A(0,a)を通る時、等式2t³+3t²+a=0が成り立つことを示せ。
(2)Aを通るCの接線が3本存在するとき、aの値の範囲を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2023年薬学部第2問〜対称式もどきの表す点の動く領域

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#軌跡と領域#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 原点をOとするxy平面上に点A(1,-1)があり、点Bは$\overrightarrow{AB}$=(2$\cos\theta$, 2$\sin\theta$)(0≦θ≦2π)を満たす点である。Bの軌跡を境界線とする2つの領域のうち、点Aを含む領域を領域Cとする。ただし、領域Cは境界線を含む。
(1)点Bの軌跡の方程式は$\boxed{\ \ ナ\ \ }$である。
(2)点(x,y)がxy平面上のすべての点を動くとき、点(x-y,xy)がxy平面上で動く範囲は式$\boxed{\ \ ニ\ \ }$で表される領域である。
(3)点(x,y)が領域C上のすべての点を動くとき、点(x-y,xy)がxy平面上で動く領域を領域Dとする。
(i)領域Dを図示しなさい。ただし領域は斜線で示し、境界線となる式も図に記入すること。
(ii)領域Dの面積は$\boxed{\ \ ヌ\ \ }$である。

2023慶應義塾大学薬学部過去問
この動画を見る 

【数Ⅱ】等式の証明・基本パターン【型を押さえてきれいな答案を書く】

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
等式の証明・基本パターンに関して解説していきます.
この動画を見る 

【数Ⅱ】【微分法と積分法】微分と接線4 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
曲線y=2x²-4x+3上の点A(0,3)を通り,点Aにおける曲線の接線に垂直な直線の方程式を求めよ。
この動画を見る 
PAGE TOP