4乗根の方程式 - 質問解決D.B.(データベース)

4乗根の方程式

問題文全文(内容文):
実数解を求めよ.
$\sqrt[4]{97-x}+\sqrt[4]{x-15}=4$
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$\sqrt[4]{97-x}+\sqrt[4]{x-15}=4$
投稿日:2021.11.19

<関連動画>

ざ・見掛け倒し

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \sum_{n=1}^{10000}n^n$
$=1^1+2^2+3^3+・・・・・・9999^{9999}+10000^{10000}$を3で割った余りを求めよ.
この動画を見る 

大学入試問題#316 群馬大学(2010) #整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学
指導講師: ますただ
問題文全文(内容文):
$2 \leqq p \lt q \lt r$
$\displaystyle \frac{1}{p}+\displaystyle \frac{1}{q}+\displaystyle \frac{1}{r} \geqq 1$をみたす整数の組$(p.g.r)$をすべて求めよ

出典:2010年群馬大学 入試問題
この動画を見る 

大阪教育大 場合の数 自然数を和で表す Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#数学(高校生)#大阪教育大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$n$をそれより小さい自然数の和で表す。
$2=1+1$の1通り
$3=1+1+1,1+2,2+1$の3通り
次の場合それぞれ何通りか。

(1)4
(2)5
(3)$n$

出典:2002年大阪教育大学 過去問
この動画を見る 

福田のおもしろ数学271〜再帰関数の値を計算する

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
整数を定義域とする関数が次のように定義されている。
\begin{eqnarray}
f(n)
=
\begin{cases}
n-3 & ( n \geqq 1000 ) \\
f(f(n+5)) & ( n \lt 1000 )
\end{cases}
\end{eqnarray}
このとき$f(84)$を求めよ
この動画を見る 

ちょっと変わった方程式 駒込高校

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
方程式を解け
$\frac{3}{1-x}+\frac{5}{x-1}=(x+\frac{1}{x})^2 - (x - \frac{1}{x})^2$
この動画を見る 
PAGE TOP