4乗根の方程式 - 質問解決D.B.(データベース)

4乗根の方程式

問題文全文(内容文):
実数解を求めよ.
$\sqrt[4]{97-x}+\sqrt[4]{x-15}=4$
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$\sqrt[4]{97-x}+\sqrt[4]{x-15}=4$
投稿日:2021.11.19

<関連動画>

内接円の半径 広陵(広島県)

アイキャッチ画像
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
内接円の半径は?
*図は動画内参照
広陵高校
この動画を見る 

福田の数学〜過去の入試問題(期間限定)〜東京慈恵会医科大学医学部2020第3問〜有限小数の性質と論証

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次の問いに答えよ。
(1) a, b, nは自然数の定数で、bは4の倍数ではなく、n$ \geq$2 とする。aが$2^n$の倍数であるが、$ 2^{n +1}$の倍数ではないとき、a(a+b), 2a(2a + b) のいずれかは、$2 ^{n + 1}$ の倍数であるが、$2^{n + 2}$の倍数ではないことを示せ。
(2) bは自然数の定数で、4の倍数ではないとする。3以上の任意の自然数nに対して、次を満たす自然数 $a_n$ が存在することを示せ。$$ \frac{a_n(a_n + b)}{2^{2^n}}$$は、小数第n位の数字が5である小数第n位までの有限小数で表される。
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜円の方程式(2)三角形の外心、高校2年生

アイキャッチ画像
単元: #数A#数Ⅱ#図形の性質#内心・外心・重心とチェバ・メネラウス#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 3点$A(-2,6),B(1,-3),C(5,-1)$を頂点とする$\triangle ABC$の外心の座標を求めよ。
この動画を見る 

条件付き確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 数学を数楽に
この動画を見る 

複号任意

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$73=m^2+n^2$となる整数m,nの組をすべて求めよ
この動画を見る 
PAGE TOP