福島大 複素数 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

福島大 複素数 Mathematics Japanese university entrance exam

問題文全文(内容文):
$z \neq 1,z^7-1=0$
証明せよ。
(1)
$w=z+\displaystyle \frac{1}{z}$とすると、$w^3+w^2-2w-1=0$

(2)
$a=\cos \displaystyle \frac{2}{7}\pi$とすると、$8a^3+4a^2-4a-1=0$

出典:2005年福島大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z \neq 1,z^7-1=0$
証明せよ。
(1)
$w=z+\displaystyle \frac{1}{z}$とすると、$w^3+w^2-2w-1=0$

(2)
$a=\cos \displaystyle \frac{2}{7}\pi$とすると、$8a^3+4a^2-4a-1=0$

出典:2005年福島大学 過去問
投稿日:2019.03.15

<関連動画>

これできる?

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
これできる?
※問題文は動画内参照
この動画を見る 

大阪大の問題の背景 特に文系の人見てください

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\cos\dfrac{2}{7}\pi,\cos\dfrac{4}{7}\pi,\cos\dfrac{6}{7}\pi$を解にもつ3次方程式
$x^3+ax^2+bx+c=0$を求めよ.
ただし,$z^7=1$とする.

2022大阪大過去問
この動画を見る 

どう解くか?だ。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
方程式を解け
$0.2(0.1x -0.8) = \frac{4x+7}{50}$

法政大学
この動画を見る 

複素数の計算 群馬大

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z=\dfrac{\sqrt3-1}{2}+\dfrac{\sqrt3+1}{2}i$である.$z^{12}$の値を求めよ

(1)$\dfrac{z}{1+i}$を$a+bi$の形で表せ.
(2)$z$を極形式で表せ.

群馬大過去問
この動画を見る 

4次方程式

アイキャッチ画像
単元: #数Ⅱ#式と証明#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ (x^2-x-1)^2-x^3=5$
これを解け.
この動画を見る 
PAGE TOP