東大 整数問題 Mathematics Japanese university entrance exam Tokyo University - 質問解決D.B.(データベース)

東大 整数問題 Mathematics Japanese university entrance exam Tokyo University

問題文全文(内容文):
$x,y,z$は自然数

(1)
$x+y+z=xyz(x \leqq y \leqq z)$を満たす$(x,y,z)$をすべて求めよ

(2)
$x^3+y^3+z^3=xyz$を満たす$(x,y,z)$は存在しないことを示せ

出典:2006年東京大学 過去問
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y,z$は自然数

(1)
$x+y+z=xyz(x \leqq y \leqq z)$を満たす$(x,y,z)$をすべて求めよ

(2)
$x^3+y^3+z^3=xyz$を満たす$(x,y,z)$は存在しないことを示せ

出典:2006年東京大学 過去問
投稿日:2019.03.19

<関連動画>

他の問題もあり!

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
x.y.zを整数とする。
次の条件を満たす整数の組(x,y,z)は全部で何組か?
(1)$1 \leqq x \leqq 5$ , $1 \leqq y \leqq 5$ , $1 \leqq z \leqq 5$
(2)$1 \leqq x \lt y \lt z \leqq 5$
(3)$x+y+z = 5$ $ \quad x \geqq 1 ,y \geqq 1,z \geqq 1$
(4)$x+y+z = 5$ $ \quad x \geqq 0 ,y \geqq 0,z \geqq 0$
(5)$1 \leqq x \leqq y \leqq z \leqq 5$

大阪経済大学
この動画を見る 

先ほどの動画の解説 前編

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
先程の動画の解説です。前編
この動画を見る 

東北大 二次関数と接線 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$C_{1}:y-x^2$
$C_{2}:y=-x^2+2ax-a$

(1)
$C_{1}$と$C_{2}$が共有点をもたない$a$の範囲


(2)
(1)のとき、$C_{1}C_{2}$の両方に接する直線が2本あることを示せ


(3)
(2)の2直線の交点の描く図形を図表せよ

出典:2015年東北大学 過去問
この動画を見る 

高校で習う因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2x^2+5xy+3y^2-3x-5y-2$を因数分解
この動画を見る 

福田の数学〜名古屋大学2024年文系第2問〜放物線と直線の関係

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#2次関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $t$を0でない実数として、$x$の関数$y$=$-x^2$+$tx$+$t$ のグラフを$C$とする。
(1)$C$上において$y$座標が最大となる点Pの座標を求めよ。
(2)Pと点O(0,0)を通る直線を$l$とする。$l$と$C$がP以外の共有点Qを持つために$t$が満たすべき条件を求めよ。また、そのとき、点Qの座標を求めよ。
(3)$t$は(2)の条件を満たすとする。A(-1,-2)として、$X$=$\displaystyle\frac{1}{4}t^2$+$t$ とおくとき、AP$^2$-AQ$^2$を$X$で表せ。また、AP<AQとなるために$t$が満たすべき条件を求めよ。
この動画を見る 
PAGE TOP