3乗根のはずし方 類題 一橋大 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

3乗根のはずし方 類題 一橋大 Mathematics Japanese university entrance exam

問題文全文(内容文):
$\alpha =\sqrt[ 3 ]{ 10+6\sqrt{ 3 } },\beta=\sqrt[ 3 ]{ 10-6\sqrt{ 3 } }$

(1)
$\alpha+\beta$

(2)
$\alpha^n+\beta^n$は自然数であることを示せ。($n$自然数)

出典:一橋大学 過去問
単元: #数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha =\sqrt[ 3 ]{ 10+6\sqrt{ 3 } },\beta=\sqrt[ 3 ]{ 10-6\sqrt{ 3 } }$

(1)
$\alpha+\beta$

(2)
$\alpha^n+\beta^n$は自然数であることを示せ。($n$自然数)

出典:一橋大学 過去問
投稿日:2019.03.20

<関連動画>

【数Ⅰ】【図形と計量】余弦定理応用1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の各場合について,△ABC の残りの辺の長さと角の大きさを求めよ。
(1) b=3,c=√3,B=60°
(2) b=2√3,c=2,C=30°
この動画を見る 

分母の有理化しなくていい。式の値 関西大

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
a+b=3 , ab=1 ,a > b
$\frac{\sqrt a - \sqrt b}{\sqrt a + \sqrt b}=?$
関西大学
この動画を見る 

【数Ⅰ】【2次関数】aは正の定数とする。y=|x²-2x|(0≦x≦a)の最大値を求めよ。

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
aは正の定数とする。y=|x²-2x|(0≦x≦a)の最大値を求めよ。
この動画を見る 

福田のわかった数学〜高校1年生034〜背理法(2)

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 背理法(2)
$\sqrt2,\sqrt[3]3$が無理数であることを既知として次を証明せよ。
$p,q,\sqrt2p+\sqrt[3]3q$が全て有理数 $\Rightarrow p=q=0$
この動画を見る 

「二次関数の最大最小 場合分け③】【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
2次関数$f(x)=x^2-2ax+4(1 \leqq x \leqq 3)$について
(1)$f(x)$の最小値$m(a)$を求めよ。
(2)$f(x)$の最大値$M(a)$を求めよ。
(3)$y=m(a)$のグラフをかけ。
(4)$y=M(a)$のグラフをかけ。


$a \gt 0$とする。
2次関数$f(x)=x^2-4x+3(0 \leqq x \leqq 1)$について
(1)$f(x)$の最小値$m(a)$を求めよ。
(2)$f(x)$の最小値$M(a)$を求めよ。
(3)$k=m(a)$のグラフをかけ。
(4)$K=M(a)$のグラフをかけ。


2次関数$f(x)=x^2-4x+3(a \leqq x \leqq a+2)$について
(1)$f(x)$の最小値$m(a)$を求めよ。
(2)$f(x)$の最小値$M(a)$を求めよ。
(3)$t=m(a)$のグラフをかけ。
(4)$T=M(a)$のグラフをかけ。
この動画を見る 
PAGE TOP