和と差の積は二乗の差? 四天王寺 - 質問解決D.B.(データベース)

和と差の積は二乗の差? 四天王寺

問題文全文(内容文):
二次方程式を解け
$(x-\frac{1}{2})^2 - 3(x+\frac{1}{2})(1-2x) = 0$

四天王寺高等学校
単元: #数学(中学生)#中3数学#2次方程式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
二次方程式を解け
$(x-\frac{1}{2})^2 - 3(x+\frac{1}{2})(1-2x) = 0$

四天王寺高等学校
投稿日:2022.06.02

<関連動画>

【高校受験対策】数学-関数22

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#1次関数#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図において,直線$\ell$は関数$y = 2x + 8$ グラフで,
曲線$m$は関数$y=ax^2$のグラフである.
点$A$は直線$\ell$と$y$軸との交点である.
点$B$は曲線$m$上の点で,その$x$座標は6であり,
線分$AB$は$x$軸に平行である.
点$C$は直線$\ell$と$x$軸との交点である.
また,原点を$O$とするとき,点$D$は$y$軸の点で,
$OB=OD$であり,その$y$座標は負である.
さらに,点$E$は$OD=BE$となる点で,線分$BE$は$y$軸に平行であり,
その$y$座標は負である.このとき,次の問いに答えなさい.

①$a$の値を求めなさい.

②直線$CD$の式を求めなさい.

③点$F$は線分$OA$の中点であり,
点$G$は線分$DE$上の点である.
直線$FG$が四角形$ODEB$の面積を2等分するとき,
点$G$の座標を求めなさい.
この動画を見る 

佐賀県立高校入試2021年「二次方程式」

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次方程式#高校入試過去問(数学)#佐賀県立高校
指導講師: 重吉
問題文全文(内容文):
佐賀県立高校入試2021年「二次方程式」
-----------------
三角形と長方形がある。
三角形は高さが底辺の長さの3倍であり、長方形は横の長さが縦の長さよりも2cm長い。
このとき、(ア)~(ウ)の各問いに答えなさい。
(ア)
長方形の縦の長さが$3cm$のとき、長方形の面積を求めなさい。

(イ)
三角形の面積が$6cm^2$とき、三角形の底辺の長さを求めなさい。

(ウ)
三角形の底辺の長さと、長方形の縦の長さが等しいとき、三角形の面積が長方形の面積より$6cm^2$回大きくなった。
このとき、三角形の底辺の長さを求めなさい。
ただし、三角形の底辺の長さを$xcm$として$x$についての方程式をつくり、答えを求めるまでの過程も書きなさい。
この動画を見る 

【高校受験対策】数学-死守38

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#連立方程式#2次方程式#1次関数#確率#2次関数#円
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守38

①$-7+5$を計算しなさい。

➁$\frac{3x-2}{5} \times10$を計算しなさい。

③$5ab^2 \div\frac{a}{3}$を計算しなさい。

④$(x+8)(x-6)$を計算しなさい。

⑤$25$の平方根を求めなさい。

⑥関数$y=\frac{a}{x}$のグラフが点$(6,-2)$を通るとき、$a$の値をを求めなさい。

⑦連立方程式を解きなさい。
$3x+y=-5$
$2x+3y=6$

⑧二次方程式を解きなさい。
$x^2+7x+1=0$

⑨右の図1で$\angle x$大きさを求めなさい。

⑩大小2つのさいころを同時に投げるとき、 2つとも同じ目が出る確率を求めなさい。

⑪右の図2において、点$A,B,C$は円$O$の周上の点である。
$\angle x$の大きさを求めなさい。

⑫左の図3のように、$y=ax^2(a\gt0)$のグラフ上 に2点$A,B$があり、$x$座標はそれぞれ$-6,4$である。
直線$AB$の傾きがであるとき、$a$の値を求めなさい。

この動画を見る 

放物線と2つの円 中心の座標は? 九州国際大付属

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次方程式#円#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
点P、Qの座標は?
*図は動画内参照

九州国際大学付属高等学校
この動画を見る 

穴埋め問題

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: 数学を数楽に
問題文全文(内容文):
$\boxed x$ , $\boxed y$は1~9の自然数
$1\boxed x - \sqrt{\boxed y} = \sqrt{1\boxed x} + \boxed y$
この動画を見る 
PAGE TOP