東京水産大 三次関数 三角形面積最大 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

東京水産大 三次関数 三角形面積最大 Mathematics Japanese university entrance exam

問題文全文(内容文):
$f(x)=-x^3+8x+3$
$f(x)$上の2つの定点$A(0,3),B(3,0)$と動点$P(a,f(a))(0 \lt a \lt 3)\triangle PAB$の面積の最大値は?

出典:2002年東京海洋大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=-x^3+8x+3$
$f(x)$上の2つの定点$A(0,3),B(3,0)$と動点$P(a,f(a))(0 \lt a \lt 3)\triangle PAB$の面積の最大値は?

出典:2002年東京海洋大学 過去問
投稿日:2019.04.10

<関連動画>

慶應商 式の証明 高校数学 Mathematics Japanese university entrance exam Keio University

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$は正の整数
$\sqrt{ 3 }$は$\displaystyle \frac{a}{b}$と$\displaystyle \frac{a+3b}{a+b}$の間にあることを示せ

出典:慶應商学部 問題
この動画を見る 

福田の数学〜早稲田大学2022年人間科学部第5問〜2次関数の区間の動く最大最小

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{5}}\ aを実数とする。関数\hspace{260pt}\\
f(x)=-x^2+6x\hspace{30pt}(a-2 \leqq x \leqq a)\hspace{130pt}\\
の最大値をg(a)、最小値をh(a)とする。このとき、\hspace{140pt}\\
ab平面においてb=g(a)のグラフとa軸によって囲まれる部分の面積は\boxed{\ \ ア\ \ }であり、\\
ab平面においてb=h(a)のグラフとa軸によって囲まれる部分の面積は\boxed{\ \ イ\ \ }である。
\end{eqnarray}

2022早稲田大学人間科学部過去問
この動画を見る 

【数Ⅱ】積分をイチから理解。面積を求めよう【まずは計算方法をマスターする】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$(1)微分するとx^2+4x+3となる関数を求めよ.$
$(2)\displaystyle \int_{1}^{2} (x^2+4x+3)dxを計算せよ. $
$(3)y=x^2-4x+3とx軸で囲われた図形の面積を求めよ.$
$(4)y=x^3-5x^2+6xとx軸で囲われた2つの図形の面積の和を求めよ.$
この動画を見る 

慶應義塾 解と係数の関係・対数方程式 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#解と判別式・解と係数の関係#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題

[1]$ x ^ 2 - x + 1 = 0$ の解をα、$x^2+x-1=0$の解をβとする。
(1)$α^n=1$となる最小のnを求めよ。
(2)αβは、$x^4+▢x^3+▢x^2+▢x+▢=0$の解である。
(3)上記の4次方程式の4つの解の平方の和 を求めよ。

[2]以下の連立方程式を解け、
\begin{eqnarray}
\left\{
\begin{array}{l}
log_2(x + y) + log_2(1 - x) = 0 \\
y = - x ^ 2 + 4x + 1
\end{array}
\right.
\end{eqnarray}

・Q 慶應大学医学部の初代医学部長は は何を発見したことで有名か?
この動画を見る 

【数Ⅱ】図形と方程式:円と直線! aを実数とする。円x²+y²-4x-8y+15=0と直線y=ax+1が 異なる2点A,Bで交わっている。 (1)aの範囲を求めなさい。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを実数とする。円$x^2+y^2-4x-8y+15=0$と直線y=ax+1が 異なる2点A,Bで交わっている。 (1)aの範囲を求めなさい。
この動画を見る 
PAGE TOP