【数Ⅰ】図形と計量:三角比の表② - 質問解決D.B.(データベース)

【数Ⅰ】図形と計量:三角比の表②

問題文全文(内容文):
・sin120°, sin135°, sin150°の値を求めよ。
・cos120°, cos135°, cos150°の値を求めよ。
・tan120°, tan135°, tan150°の値を求めよ。
チャプター:

0:00 オープニング
0:18 単位円を使おう!
2:45 30°でやってみる!
4:38 他の角度で応用!
5:45 いよいよ120°135°150°で!
7:20 数字(値)だけ埋める!
8:02 注意点(マイナスについて)!

単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
・sin120°, sin135°, sin150°の値を求めよ。
・cos120°, cos135°, cos150°の値を求めよ。
・tan120°, tan135°, tan150°の値を求めよ。
投稿日:2021.05.03

<関連動画>

2023高校入試解説14問目 2次方程式 渋谷教育学園幕張

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#2次関数#2次方程式と2次不等式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
方程式を解け
$(x+\sqrt 3 +\sqrt 5)^2 - 3 \sqrt 5(x-2 \sqrt 5 + \sqrt 3 ) -35 = 0$

2023渋谷教育学園幕張高等学校
この動画を見る 

福田のおもしろ数学037〜相加相乗平均の罠〜2変数関数の最小値

アイキャッチ画像
単元: #数Ⅰ#2次関数#式と証明#恒等式・等式・不等式の証明#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$x>1,y>1$のとき、
$x+y+\frac{2}{x+y}+\frac{1}{2xy}$の最小値を求めよ
この動画を見る 

「三角比(方程式と不等式)」【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の三角方程式、不等式を解け。
ただし、$0^{ \circ } \leqq \theta \leqq 180^{ \circ }$とする。
(1)
$\cos\theta=\displaystyle \frac{1}{2}$
$\theta=60^{ \circ }$

(2)
$\sin\theta=\displaystyle \frac{1}{\sqrt{ 2 }}$
$\theta=45^{ \circ },135^{ \circ }$

(3)
$\tan\theta=\displaystyle \frac{1}{\sqrt{ 3 }}$
$\theta=150^{ \circ }$

(4)
$2\cos\theta+\sqrt{ 3 }=0$
$\cos\theta=-\displaystyle \frac{\sqrt{ 3 }}{2}$より
$\theta=150^{ \circ }$

(5)
$\sqrt{ 3 }\tan\theta-3=0$
$\tan\theta=\sqrt{ 3 }$より
$\theta=60^{ \circ }$

(6)
$2\sin^2\theta-5\cos\theta+1=0$
$2(1-\cos^2\theta)-5\cos\theta+1=0$
$2\cos^2\theta+5\cos\theta-3=0$
$-1 \leqq \cos\theta \leqq 1$より$\cos\theta+3=0$
したがって$2\cos\theta-1=0$
$\cos\theta=\displaystyle \frac{1}{2}$より$\theta=60^{ \circ }$
この動画を見る 

福田の数学〜慶應義塾大学2022年商学部第1問(1)〜倍数の個数を数える

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(1)1から1000までの整数のうち、2,3,5の少なくとも2つで割り切れる数
は$\boxed{\ \ アイウ\ \ }$個あり、2,3,5の少なくとも1つで割り切れ、
かつ6で割り切れない数は$\boxed{\ \ エオカ\ \ }$個ある。

2022慶應義塾大学商学部過去問
この動画を見る 

【数Ⅰ】【図形と計量】球2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
右の図のように、3辺の長さが5、6、7である三角形を底面とする三角柱に、三角柱の高さと同じ直径の球が内接している。
(1)球の表面積と体積を求めよ。
(2)三角柱の表面積と体積を求めよ。
(3)球と三角柱の表面積の比を求めよ。
(4)球と三角柱の体積比は、球と三角柱の表面積の比に等しいことを示せ。
※図は動画内参照
この動画を見る 
PAGE TOP