【3分で身に付く基礎力!】連立方程式:広島大学附属高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【3分で身に付く基礎力!】連立方程式:広島大学附属高等学校~全国入試問題解法

問題文全文(内容文):
入試問題 広島大学附属高等学校

連立方程式を解け
$3x+4y=5x+6y=7$
単元: #数学(中学生)#連立方程式#高校入試過去問(数学)#広島大学附属高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 広島大学附属高等学校

連立方程式を解け
$3x+4y=5x+6y=7$
投稿日:2021.06.05

<関連動画>

【中学数学】連立方程式の基礎を総復習【中2夏期講習①】

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$
\displaystyle (1)
\begin{cases}
2x + y = 5\\
-x + y = 2
\end{cases}
$
$
\displaystyle (2)
\begin{cases}
4x - 3y = -9\\
3x - 7y = 17
\end{cases}
$
$
\displaystyle (1)
\begin{cases}
2x + y = 5\\
-x + y = 2
\end{cases}
$
$
\displaystyle (4)
\begin{cases}
x = -3y - 2\\
x + 12y = 4
\end{cases}
$
$
\displaystyle (5)
\begin{cases}
2x + 3y = 7\\
4x - 3y = 5
\end{cases}
$
$
\displaystyle (6)
\begin{cases}
7x + 6y = -4\\
8x - 15y = -24
\end{cases}
$
この動画を見る 

【分かっていても手間はかかる】連立方程式:東大寺学園高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
x,yについての連立方程式
$ \begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{3}{3x+4y}-\dfrac{4}{4x-3y}=10 \\
\dfrac{4}{3x+4y}+\dfrac{3}{4x-3y}=5
\end{array}
\right.
\end{eqnarray}$
を解け.

東大寺学園高校過去問
この動画を見る 

中2数学「連立方程式の文章題⑥(池の周りの速さ)」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~連立方程式の文章題⑥~ (池の周りの速さ)

例題
1周2kmの池の周りを兄と弟が同じ位置から同時に 出発します。
反対方向に進むと、出発してから5分後に 2人は、初めて出会います。
また、 同じ方向に進むと 出発してから20分後に兄は、弟を追いこします。兄と弟の速さは、それぞれ分速何mですか。
この動画を見る 

【テスト対策・中2】2章-3

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$x,y$についての3つの二元一次方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+2y=8 \\\
4x-5y=3 \\\
5x-ay=4
\end{array}
\right.
\end{eqnarray}$
のすべてにあてはまる解があるとき,
その解と$a$の値を求めなさい.

②次の連立方程式を解きなさい.
$\begin{eqnarray}
\left\{
\begin{array}{l}
2a+b-c=-2 \\\
2b+c-a=-3 \\\
2c+a-b=7
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

【ぜひ、ここでマスターしたい!】連立方程式:活水高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の方程式を解きなさい.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x + y +1= 0 \\
3x + y +9= 0
\end{array}
\right.
\end{eqnarray}$

活水高等学校過去問
この動画を見る 
PAGE TOP