信州大(医)多項式 - 質問解決D.B.(データベース)

信州大(医)多項式

問題文全文(内容文):
実数$x,y$が
$2^4-2x^3y-3x^3+3x^2y-xy+y^2+x-y=0$を満たすとき、$x^2+y^2-4y+4$の最小値は?

出典:信州大学医学部 過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数$x,y$が
$2^4-2x^3y-3x^3+3x^2y-xy+y^2+x-y=0$を満たすとき、$x^2+y^2-4y+4$の最小値は?

出典:信州大学医学部 過去問
投稿日:2019.05.16

<関連動画>

福田の1.5倍速演習〜合格する重要問題058〜慶應義塾大学2019年度環境情報学部第5問〜正方形の中の内接外接する円の半径

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{5}}$ 図のように(※動画参照)、1つの正方形の中に、半径の異なる3種類の円が合計10個配置されている。
円$A_1$と$A_2$は半径が同じRで、それぞれ図のように正方形の2辺に内接している。
円$B_1,B_2,B_3,B_4,B_5,B_6$は半径が同じrで、円$B_1$と$B_2$は接し、
図のように両方とも円$A_1$に内接し円$A_2$に外接している。円$B_3$と$B_4$は接し、図のように両方とも円$A_1$と円$A_2$に内接している。円$B_5$と$B_6$は接し、
図のように両方とも円$A_1$に外接し円$A_2$に内接している。
円$C_1$と$C_2$は半径が同じ$r'$で、それぞれ図のように正方形の2辺に内接し、円$A_1$と$A_2$に外接している。なお、円$B_1,B_2,B_5,B_6$は正方形の辺に接していない。
このとき、正方形の1辺の長さをsとすると
$\left\{\begin{array}{1}
R=\displaystyle\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}r \\
s=\left(\boxed{\ \ オカ\ \ }\sqrt{R}+\boxed{\ \ キク\ \ }\sqrt{r'}\right)^{\boxed{ケコ}}\\
r'=\frac{\boxed{\ \ サシ\ \ }+\displaystyle\sqrt{10}+\boxed{\ \ スセ\ \ }\sqrt{\boxed{\ \ ソタ\ \ }+\displaystyle5\sqrt{10}}}{\boxed{\ \ チツ\ \ }}r\\
\end{array}\right.$
である。

2019慶應義塾大学環境情報学部過去問
この動画を見る 

福田のわかった数学〜高校2年生020〜円の極線の公式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#図形と方程式#恒等式・等式・不等式の証明#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 円の方程式
円$x^2+y^2=r^2$と円の内部の点$(a,b)$に対して
$ax+by=r^2$
はどんな直線を表すか説明せよ。
ただし、$(a,b)≠(0,0)$とする。
この動画を見る 

【高校数学】 数Ⅱ-65 円と直線の共有点①

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の円と直線の共有点の座標を求めよう。

①$x^2+y^2=2,2x-y+3=0$

②$x^2+y^2=5,2x-y-5=0$

◎次の円と直線の共有点の個数を求めよう。

③$x^2+y^2=1, y=-2x+3$

④$x^2+y^2=5,2x-y-2-0$
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜直線の方程式(5)直線群と軌跡、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 2直線$x+5y-7=0$ $\cdots$①, $2x-y-4=0$ $\cdots$②の交点を通り、
直線$x+4y-6=0$ に垂直な直線の方程式を求めよ。

${\Large\boxed{2}}$ $m$が実数全体を動くとき、次の2直線の交点$P$はどんな図形を描くか。
$mx-y=0$ $\cdots$①  $x+my-m-2=0$ $\cdots$②
この動画を見る 

【数Ⅱ】図形と方程式:x²+y²+4x-6y+13=0はどのような図形を表しているでしょう?

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
教材: #高校ゼミスタンダード#高校ゼミスタンダード数Ⅱ#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x^2+y^2+4x-6y+13=0$はどのような図形を表しているか?
この動画を見る 
PAGE TOP