名古屋大 双曲線 東大大学院数学科卒 杉山さん - 質問解決D.B.(データベース)

名古屋大 双曲線 東大大学院数学科卒 杉山さん

問題文全文(内容文):
$f(x)=\displaystyle \frac{a^x+a^{-x}}{a^x-a^{-x}}$
$a \gt 0,a \neq 1$

(1)
$f(x)$のとりうる範囲を求めよ

(2)
$f(x)-bx=0$が解をもつ条件を求めよ

出典:1994年名古屋大学 過去問
単元: #大学入試過去問(数学)#平面上の曲線#2次曲線#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=\displaystyle \frac{a^x+a^{-x}}{a^x-a^{-x}}$
$a \gt 0,a \neq 1$

(1)
$f(x)$のとりうる範囲を求めよ

(2)
$f(x)-bx=0$が解をもつ条件を求めよ

出典:1994年名古屋大学 過去問
投稿日:2019.06.05

<関連動画>

【数C】【平面上の曲線】楕円x²/8+y²/4=1上の点(2,√2) を通り、この楕円の焦点を焦点とする双曲線の方程式を求めよ。また、双曲線の漸近線の方程式も求めよ。

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師: 理数個別チャンネル
問題文全文(内容文):
楕円 $\displaystyle \frac{x^2}{8}+\frac{y^2}{4}=1$ 上の点 $(2,\ \sqrt{2})$を通り、
この楕円の焦点を焦点とする双曲線の方程式を求めよ。
また、双曲線の漸近線の方程式も求めよ。
この動画を見る 

重積分⑦-2【極座標による変数変換】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #大学入試過去問(数学)#数学検定・数学甲子園・数学オリンピック等#平面上の曲線#積分とその応用#2次曲線#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学検定#数学検定1級#数学(高校生)#数C#数Ⅲ#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
$x^2+y^2+z^2=4a^2$ , $z \geqq 0$
$(x-a)^2+y^2=a^2$ , $z \geqq 0$
xy平面 (a>0)で囲まれた体積Vを求めよ。
この動画を見る 

福田の数学〜早稲田大学2021年人間科学部第7問〜双曲線と図形問題

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#平面上の曲線#図形と計量#2次曲線#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{7}}$ 原点を$O$とする座標平面上で、2点$(\sqrt5,0),$$(-\sqrt5,0)$を焦点とし、2点$A(1,0),$$A'(-1,0)$を頂点とする双曲線を$H$とする。$H$の方程式を$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$と表すとき、$a^2=\boxed{\ \ ネ\ \ },$ $b^2=\boxed{\ \ ノ\ \ }$である。双曲線Hの漸近線のうち、傾きが正であるものの方程式は$y=\boxed{\ \ ハ\ \ }x$である。$点P(p,q)$は双曲線$H$の$第1象限$の部分を動く点とする。$点P$から$x軸$に下ろした垂線の足を$Q$、$直線PQ$と$双曲線H$の漸近線との交点のうち、$第1象限$にあるものを$R$とする。$点P$における$H$の接線と$直線x=1$との交点を$M$とし、$直線OM$と$直線AP$との交点を$N$とする。$三角形OQR$の面積を$S$、$三角形OAN$の面積を$T$とするとき、$\frac{T}{S}$は、$p=\boxed{\ \ ヒ\ \ }$のとき、最大値$\frac{\boxed{\ \ フ\ \ }}{\boxed{\ \ ヘ\ \ }}$をとる。

2021早稲田大学人間科学部過去問
この動画を見る 

2023高校入試数学解説54問目 グラフ 明治学院

アイキャッチ画像
単元: #数学(中学生)#平面上の曲線#2次曲線#高校入試過去問(数学)#数C
指導講師: 数学を数楽に
問題文全文(内容文):
$y=\frac{a}{x}$のグラフと点P(2,1)を表した図
a>2となるグラフはどれ?
*図は動画内参照

2023明治学院高等学校
この動画を見る 

【数C】【平面上の曲線】楕円x²/9 + y²/4 = 1 上の点Pと点(2,0)の距離lの最小値、および最大値を求めよ

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師: 理数個別チャンネル
問題文全文(内容文):
楕円 $\displaystyle \frac{x^2}{9}+\frac{y^2}{4}=1$ 上の
点 $\mathrm{P}$ と点$(2,\ 0)$ の距離 $l$ の最小値、および最大値を求めよ。
この動画を見る 
PAGE TOP