高校入試だけど確率漸化式!?西大和学園2022入試問題解説100問解説!!58問目 - 質問解決D.B.(データベース)

高校入試だけど確率漸化式!?西大和学園2022入試問題解説100問解説!!58問目

問題文全文(内容文):
正四面体の頂点を、点Pが1秒ごとに今ある頂点以外の頂点に等しい確率で移動する
点Pが最初に点Aにあるとき4秒後に点Aにある確率は?
*図は動画内参照

2022西大和学園高等学校
単元: #数学(中学生)#中2数学#確率#数列#漸化式#高校入試過去問(数学)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
正四面体の頂点を、点Pが1秒ごとに今ある頂点以外の頂点に等しい確率で移動する
点Pが最初に点Aにあるとき4秒後に点Aにある確率は?
*図は動画内参照

2022西大和学園高等学校
投稿日:2022.02.16

<関連動画>

【数B】数列:隣接三項間型(重解) 次の条件によって定められる数列{an}の一般項を求めよ。a[1]=1,a[2]=5,a[n+2]+8a[n+1]+16a[n]=0

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件によって定められる数列${an}$の一般項を求めよ。
$a_1=1,a_2=5,a_{n+2}+8a_{n+1}-16a_n=0$
この動画を見る 

福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察5(受験編)

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#式と証明#式の計算(整式・展開・因数分解)#微分法と積分法#恒等式・等式・不等式の証明#接線と増減表・最大値・最小値#数列#数列とその和(等差・等比・階差・Σ)#数学的帰納法#微分とその応用#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$n$個の正の数$a_1,a_2,\cdots,a_n$に対して

$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n} \geqq \sqrt[n]{a_1a_2\cdots a_n}\\$
この動画を見る 

数列の和の公式の利用

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\displaystyle \sum_{k=1}^n (-1)^{k+1}k^2$
$1^2-2^2+3^2-4^2+5^2-6^2・・・・・・$
この動画を見る 

【数B】数列:漸化式の基本を解説シリーズその3 階差型

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a_1=3,a_{n+1}=a_n+2^n$ で定められる数列{$a_n$}の一般項を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2021年経済学部第3問〜数列の部分和と一般項の関係

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 数列\left\{a_n\right\}に対して、\\
S_n=\sum_{k=1}^na_k (n=1,2,3,\ldots)\\
とおく。\left\{a_n\right\}は、a_2=1,a_6=2および\\
(*) S_n=\frac{(n-2)(n+1)^2}{4}a_{n+1} (n=1,2,3,\ldots)\\
を満たすとする。\\
\\
(1)a_1=-\boxed{\ \ ア\ \ }である。(*)でn=4,5とすると、a_3+a_4とa_5の関係が2通り定まり、\\
a_5=\boxed{\ \ イ\ \ }と求まる。さらに(*)でn=3として、a_3=\boxed{\ \ ウエ\ \ },a_4=\boxed{\ \ オカ\ \ }と求まる。\\
\\
(2)n \geqq 2に対してa_n=S_n-S_{n-1}であるから(*)とあわせて\\
(n-\boxed{\ \ キ\ \ })(n+\boxed{\ \ ク\ \ })^2a_{n+1}=(n^3-\boxed{\ \ ケ\ \ }n^2+\boxed{\ \ コ\ \ })a_n (n=2,3,\ldots)\\
\\
ゆえに、n \geqq 3ならば(n+\boxed{\ \ サ\ \ })a_{n+1}=(n-\boxed{\ \ シ\ \ })a_nとなる。そこで、n \geqq 3に\\
対してb_n=(n-r)(n-s)(n-t)a_nとおくと、漸化式\\
b_{n+1}=b_n (nz-3,4,5,\ldots)\\
が成り立つ。ただしここに、r \lt s \lt tとしてr=\boxed{\ \ ス\ \ },s=\boxed{\ \ セ\ \ },t=\boxed{\ \ ソ\ \ }である。\\
したがって、n \geqq 4に対して\\
a_n=\frac{\boxed{\ \ ソ\ \ }a_4}{(n-r)(n-s)(n-t)}\\
となる。この式はn=3の時も成立する。\\
\\
(3)n \geqq 2に対して\\
S_n=\frac{\boxed{\ \ チツ\ \ }(n+\boxed{\ \ テ\ \ })(n-\boxed{\ \ ト\ \ })}{n(n-\boxed{\ \ ナ\ \ })}\\
であるから、S_n \geqq 59となる最小のnはn=\boxed{\ \ ニヌ\ \ }である。
\end{eqnarray}

2021慶應義塾大学経済学部過去問
この動画を見る 
PAGE TOP