奇数の平方の逆数の和になぜかあれが登場 - 質問解決D.B.(データベース)

奇数の平方の逆数の和になぜかあれが登場

問題文全文(内容文):
これを解け.$n\to \infty$である.

$\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{5^2}+\dfrac{1}{7^2}+・・・・・・$
$+\dfrac{1}{(2n-1)^2}=\dfrac{\Box^2}{8}$
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.$n\to \infty$である.

$\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{5^2}+\dfrac{1}{7^2}+・・・・・・$
$+\dfrac{1}{(2n-1)^2}=\dfrac{\Box^2}{8}$
投稿日:2021.06.09

<関連動画>

【数Ⅰ】数と式:繁分数① 次の式を簡単にしよう。{(a+x)/(a-x)-(a-x)/(a+x)}/{(a+x)/(a-x)+(a-x)/(a+x)}

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式を簡単にしよう。
$\dfrac{\dfrac{a+x}{a-x}-\dfrac{a-x}{a+x}}{\dfrac{a+x}{a-x}+\dfrac{a-x}{a+x}}$
この動画を見る 

福田の数学〜慶應義塾大学2022年看護医療学部第2問(3)〜平方数を3で割った余りに関する論証

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#推理と論証#推理と論証#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ (3)次の2つの命題を証明せよ。\hspace{170pt}\\
(\textrm{i})整数nが3の倍数でないならば、n^2を3で割った時の余りは1である。\\
(\textrm{ii})3つの整数x,y,zが等式x^2+y^2=z^2を満たすならば、\hspace{53pt}\\
xとyの少なくとも一方は3の倍数である。\hspace{105pt}\\
\end{eqnarray}

2022慶應義塾大学看護医療学科過去問
この動画を見る 

Xが消える 不等式

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
不等式を解け
$x+2<x$
この動画を見る 

平方根 小数部分 成城学園

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2 \sqrt 3$の小数部分をaとするとき
$a^2+6a-16=?$


成城学園高等学校
この動画を見る 

福田の数学〜上智大学2023年理工学部第1問(2)〜関数の集合と条件

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (2)$\left\{x|x>0\right\}$を定義域とする関数$f(x)$の集合Aに対する以下の3つの条件を考える。
(P)関数$f(x)$と$g(x)$が共にAの要素ならば、関数$f(x)+g(x)$もAの要素である。
(Q)関数$f(x)$と$g(x)$が共にAの要素ならば、関数$f(x)g(x)$もAの要素である。
(R)$\alpha$が0でない定数で関数$f(x)$がAの要素ならば、関数$\alpha f(x)$もAの要素である。
Aを以下の(i)~(iv)の集合とするとき、条件(P),(Q),(R)のうち成り立つものをすべて解答欄にマークせよ。
(i)$f(1)$=0 を満たす関数$f(x)$全体の集合
(ii)$f(\alpha)$=0 となる正の実数$\alpha$が存在する関数$f(x)$全体の集合
(iii)全ての正の実数$x$に対して$f(x)$>0 が成り立つ関数$f(x)$全体の集合
(iv)定義域$\left\{x|x>0\right\}$のどこかで連続でない関数$f(x)$全体の集合
この動画を見る 
PAGE TOP