信州大 漸化式 - 質問解決D.B.(データベース)

信州大 漸化式

問題文全文(内容文):
$a_{1}=\displaystyle \frac{1}{12}$

$a_{n+1}=\displaystyle \frac{a_{n}}{1+6(n+1)(n+2)a_{n}}$

(1)
一般項を求めよ

(2)
$\displaystyle \sum_{k=1}^n a_k$

出典:2010年信州大学 過去問
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{1}=\displaystyle \frac{1}{12}$

$a_{n+1}=\displaystyle \frac{a_{n}}{1+6(n+1)(n+2)a_{n}}$

(1)
一般項を求めよ

(2)
$\displaystyle \sum_{k=1}^n a_k$

出典:2010年信州大学 過去問
投稿日:2019.07.28

<関連動画>

ちょっと変わった漸化式 和歌山大

アイキャッチ画像
単元: #数列#漸化式#和歌山大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022和歌山大学過去問題
$a_{1}=\frac{1}{2}$,$a_{n+1}=\frac{2}{1+a_{n}}$
$b_{1}=1$,$a_{n}b_{n+1}=b_{n}$
数列$b_{n}$の三項間漸化式をつくれ
$a_{n}$の一般項を求めよ
この動画を見る 

開成中学 整数 等差数列の和

アイキャッチ画像
単元: #算数(中学受験)#数列#数列とその和(等差・等比・階差・Σ)#過去問解説(学校別)#数学(高校生)#数B#開成中学
指導講師: 鈴木貫太郎
問題文全文(内容文):
平方数を3つ以上の連続数の和で表す
(例)$6^2=1+2+3+…+8=11+12+13$

(1)
$7^2$

(2)
$10^2$

(3)
$30^2$は何通りあるか

出典:2018年開成中学校 過去問
この動画を見る 

慶應義塾大 漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{n}=n3^n_{100}C_{n}$
$b_{n}=n^22^n_{100}C_{n}$
$(n=1,2,3…100)$

(1)
$a_{n}$が最大となる$n$

(2)
$b_{n}$が最大となる$n$

出典:慶應義塾 過去問
この動画を見る 

福田のおもしろ数学571〜漸化式で定まった数列の項に関する等式の証明

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$a_0=1,a_1=3,a_{n+1}=\dfrac{{a_n}^2+1}{2} \ (n\geqq 1)$のとき

$\dfrac{1}{a_0+1}+\dfrac{1}{a_1+1}+\cdots +\dfrac{1}{a_n+1}+\dfrac{1}{a_{n+1}-1}=1$

を示せ。
    
この動画を見る 

大学入試問題#595「山口大学に初挑戦!」 山口大学(2014) #数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#山口大学#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a_n=\tan\displaystyle \frac{\pi}{2^{n+1}}$のとき
$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{a_{n+1}}{a_n}$を求めよ

出典:2014年山口大学 入試問題
この動画を見る 
PAGE TOP